Description
Code Sample, a copy-pastable example if possible
import pandas
columns = pandas.DataFrame({'a2': [11, 12, 13], 'b2': [14, 15, 16]})
inputs = pandas.DataFrame({'a1': [1, 2, 3], 'b1': [4, 5, 6], 'c1': [7, 8, 9]})
inputs.iloc[:, [1]] = columns.iloc[:, [0]]
print(inputs)
Problem description
I have a code which is replacing a set of columns with another set of columns, based on column indices. To make things done without a special case, I assumes I could just use iloc
to both select and set columns in a DataFrame. But it seems that this not work and fails in strange ways.
Expected Output
a1 b1 c1
0 1 11 7
1 2 12 8
2 3 13 9
But in reality, you get:
a1 b1 c1
0 1.0 NaN 7.0
1 2.0 NaN 8.0
2 3.0 NaN 9.0
See how values converted to float and how column is NaN
s?
But, if I do the following I get expected results:
inputs.iloc[:, [1]] = [[11], [12], [13]]
This also works:
inputs.iloc[:, [1]] = columns.iloc[:, [0]].values
So if it works with lists and ndarrays, one would assume it would also work with DataFrames themselves. But it does not.
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.3.final.0
python-bits: 64
OS: Linux
OS-release: 4.13.0-46-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.23.3
pytest: None
pip: 18.0
setuptools: 40.0.0
Cython: None
numpy: 1.15.0
scipy: None
pyarrow: None
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.7.3
pytz: 2018.5
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None