Description
Code Sample, a copy-pastable example if possible
import pandas as pd
start = pd.Timestamp('2018-7-3 2:00:00', tz='America/Los_Angeles')
end = start + pd.Timedelta('36H')
a = pd.DatetimeIndex(start=start, end=end, freq='12H')
a.normalize().unique()
Problem description
The normalize method correctly sets the DatetimeIndex to midnight but the unique method returns a new DatetimeIndex not set to midnight, rather it returns a DatetimeIndex time as if converted to UTC (07:00 in the example code) but still retains the correct timezone ('America/Los_Angeles' in the example code). The code returns:
DatetimeIndex(['2018-07-03 07:00:00-07:00', '2018-07-04 07:00:00-07:00'], dtype='datetime64[ns, America/Los_Angeles]', freq=None)
Expected Output
DatetimeIndex(['2018-07-03 00:00:00-07:00', '2018-07-04 00:00:00-07:00'], dtype='datetime64[ns, America/Los_Angeles]', freq=None)
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Linux
OS-release: 4.15.0-24-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_CA.UTF-8
LOCALE: en_CA.UTF-8
pandas: 0.23.1
pytest: None
pip: 10.0.1
setuptools: 39.2.0
Cython: 0.28.3
numpy: 1.14.3
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.4.0
sphinx: None
patsy: None
dateutil: 2.7.3
pytz: 2018.3
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.2.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 1.0.1
sqlalchemy: 1.2.7
pymysql: None
psycopg2: 2.7.4 (dt dec pq3 ext lo64)
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: 0.4.1
pandas_datareader: None