Description
Code Sample, a copy-pastable example if possible
In [62]: import pandas as pd
In [63]: import numpy as np
In [64]: df = pd.DataFrame(data=[['data1', 2, np.nan], ['data2', 3, 4], ['data3', 4, 4]], index=[1, 2, 3], columns=['a', 'b', 'c'])
In [68]: df
Out[68]:
a b c
1 data1 2 NaN
2 data2 3 4.0
3 data3 4 4.0
In [65]: df.groupby(by=['a','b']).sum(skipna=False)
Out[65]:
c
a b
data1 2 0.0
data2 3 4.0
data3 4 4.0
Problem description
The Nan value is being treated as 0.0. Is there an option to treat Nan as Nan and sum() to return Nan?
Expected Output
c
a b
data1 2 NaN
data2 3 4.0
data3 4 4.0
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 2.7.14.final.0
python-bits: 64
OS: Linux
OS-release: 3.10.0-327.36.3.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: C
LANG: en_US.UTF-8
LOCALE: None.None
pandas: 0.22.0
pytest: 3.5.0
pip: 9.0.3
setuptools: 39.0.1
Cython: 0.28.2
numpy: 1.14.2
scipy: 1.0.1
pyarrow: 0.9.0
xarray: 0.10.2
IPython: 5.6.0
sphinx: 1.7.2
patsy: 0.5.0
dateutil: 2.7.2
pytz: 2018.4
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 2.2.2
openpyxl: 2.5.2
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.0.2
lxml: 4.2.1
bs4: 4.3.2
html5lib: 0.999
sqlalchemy: 1.2.6
pymysql: None
psycopg2: 2.7.4 (dt dec pq3 ext lo64)
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None