Skip to content

DataFrame.replace with dict behaves inconsistently for integers and strings #20656

Closed
@Coldsp33d

Description

@Coldsp33d

From SO

DataFrame.replace does not behave consistently when replacing integers vs replacing strings.

Reproducible example:

df = pd.DataFrame({'A': [0, 1]})
df.A.replace({0: 1, 1: 0})

This yields the result:

    df
    A
    1
    0

However, when using the same commands for string values

df = pd.DataFrame({'B': ['a', 'b']})
df.B.replace({'a': 'b', 'b': 'a'})

This gives

df
B
a
a

But it should give

B
b
a

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.0.final.0
python-bits: 64
OS: Darwin
OS-release: 17.4.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: en_US.UTF-8
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.22.0
pytest: None
pip: 9.0.3
setuptools: 38.5.1
Cython: 0.28.1
numpy: 1.14.0
scipy: 1.0.0
pyarrow: None
xarray: None
IPython: 6.2.1
sphinx: None
patsy: None
dateutil: 2.6.1
pytz: 2018.3
blosc: None
bottleneck: None
tables: None
numexpr: 2.6.4
feather: None
matplotlib: 2.1.2
openpyxl: None
xlrd: 0.9.4
xlwt: None
xlsxwriter: None
lxml: 3.8.0
bs4: 4.6.0
html5lib: 1.0b8
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugCompatpandas objects compatability with Numpy or Python functionsStringsString extension data type and string data

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions