Skip to content

Modifying dataframe with float values using .iloc and boolean indexing raises ValueError #20627

Closed
@karih

Description

@karih

There seems to be inconsistent behavior between updating parts of a dataframe using .iloc depending on whether the index is accessed using an integer list or a boolean array. This does not seem to happen if all dataframe values are integer (but still happens if np.nan is replaced by 7.0). Example:

Code Sample

import numpy as np

data = [
    [0, 2, 13], 
    [1, 6, 21], 
    [2, np.nan, 0],
    [3, 5, 3]
]
df = pd.DataFrame(data, columns=("idx", "val1", "val2")).set_index("idx")

print("updating with ints")
df.iloc[np.nonzero(df.index >= 2)[0],0] *= 2
print("updating with bool")
try:
    df.iloc[df.index >= 2,0] *= 2 # raises ValueError
except ValueError as e:
    print("ValueError", e)
try:
    df.iloc[df.index < 2,0] *= 2 # raises ValueError
except ValueError as e:
    print("ValueError", e)
print("iloc with bool")
print(df.iloc[df.index >= 2,0])
print("iloc with ints")
print(df.iloc[np.nonzero(df.index >= 2)[0],0])

Output is:

updating with ints
updating with bool
ValueError Must have equal len keys and value when setting with an iterable
ValueError Must have equal len keys and value when setting with an iterable
iloc with bool
idx
2     NaN
3    10.0
Name: val1, dtype: float64
iloc with ints
idx
2     NaN
3    10.0
Name: val1, dtype: float64

Problem Description

Anticipated behavior is that they should be equivalent when updating, particuarly when one considers that the return value of .iloc is the same. Instead, we receieve ValueError: Must have equal len keys and value when setting with an iterable.

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.4.final.0
python-bits: 64
OS: Linux
OS-release: 4.15.15-1-ARCH
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: en_US.utf8
LOCALE: en_US.UTF-8

pandas: 0.22.0
pytest: None
pip: 9.0.3
setuptools: 38.5.2
Cython: 0.25.2
numpy: 1.14.2
scipy: 1.0.0
pyarrow: None
xarray: None
IPython: 6.2.1
sphinx: None
patsy: None
dateutil: 2.7.2
pytz: 2018.3
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.2.0
openpyxl: None
xlrd: 1.0.0
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 1.0.1
sqlalchemy: 1.2.5
pymysql: None
psycopg2: 2.7.4 (dt dec pq3 ext lo64)
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions