Skip to content

pd.to_datetime, unit='s' much slower for float64 than for int64 #20445

Closed
@bchu

Description

@bchu

Calling pd.to_datetime with the unit='s' kwarg appears to be 1000x slower for float64 than for int64. There does not appear to be a difference in performance between the two types if the timestamps are first converted to nanoseconds and no unit is specified.

timestamp_seconds_int = pd.Series(np.random.randint(1521685107 - 604800, 1521685107, 1000000, dtype='int64'))
timestamp_seconds_float = timestamp_seconds_int.astype('float64')
%%timeit -r 3
pd.to_datetime(timestamp_seconds_int, unit='s')
Output: 12.4 ms ± 1.66 ms per loop (mean ± std. dev. of 3 runs, 100 loops each)
%%timeit -r 3
pd.to_datetime(timestamp_seconds_float, unit='s')
Output: 6.88 s ± 138 ms per loop (mean ± std. dev. of 3 runs, 1 loop each)

Output of pd.show_versions()

[paste the output of pd.show_versions() here below this line]
INSTALLED VERSIONS

commit: None
python: 3.6.4.final.0
python-bits: 64
OS: Darwin
OS-release: 17.4.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.23.0.dev0+658.g17c1fadb0
pytest: 3.0.6
pip: 9.0.3
setuptools: 38.5.2
Cython: 0.28.1
numpy: 1.14.1
scipy: 1.0.0
pyarrow: 0.8.0
xarray: 0.10.0
IPython: 6.2.1
sphinx: None
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2016.10
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 2.1.0
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.9999999
sqlalchemy: 1.1.10
pymysql: None
psycopg2: 2.7.1 (dt dec pq3 ext lo64)
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    DatetimeDatetime data dtypePerformanceMemory or execution speed performance

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions