Closed
Description
Code
In [33]: df = pd.DataFrame({'date1': [Timestamp('2017-05-25 14:02:23'), NaT],
'date2': [Timestamp('2017-05-25 14:34:43'), Timestamp('2017-05-16 19:37:43')]})
In [34]: df2 = df.apply(lambda x: x.dt.tz_localize('UTC'), axis=0)
In [35]: df3 = df2.assign(date1=df2.date2)
In [36]: df
Out[36]:
date1 date2
0 2017-05-25 14:02:23 2017-05-25 14:34:43
1 NaT 2017-05-16 19:37:43
In [37]: df2
Out[37]:
date1 date2
0 2017-05-25 14:02:23+00:00 2017-05-25 14:34:43+00:00
1 NaT 2017-05-16 19:37:43+00:00
In [38]: df3
Out[38]:
date1 date2
0 2017-05-25 14:34:43+00:00 2017-05-25 14:34:43+00:00
1 2017-05-16 19:37:43+00:00 2017-05-16 19:37:43+00:00
In [39]: df.dtypes
Out[39]:
date1 datetime64[ns]
date2 datetime64[ns]
dtype: object
In [40]: df2.dtypes
Out[40]:
date1 datetime64[ns, UTC]
date2 datetime64[ns, UTC]
dtype: object
In [41]: df3.dtypes
Out[41]:
date1 datetime64[ns, UTC]
date2 datetime64[ns, UTC]
dtype: object
In [42]: df.T
Out[42]:
0 1
date1 2017-05-25 14:02:23 NaT
date2 2017-05-25 14:34:43 2017-05-16 19:37:43
In [43]: df2.T
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
<ipython-input-43-7d2317a1beae> in <module>()
----> 1 df2.T
e:\github\pandas\pandas\core\frame.pyc in transpose(self, *args, **kwargs)
1876 """Transpose index and columns"""
1877 nv.validate_transpose(args, dict())
-> 1878 return super(DataFrame, self).transpose(1, 0, **kwargs)
1879
1880 T = property(transpose)
e:\github\pandas\pandas\core\generic.pyc in transpose(self, *args, **kwargs)
600
601 nv.validate_transpose_for_generic(self, kwargs)
--> 602 return self._constructor(new_values, **new_axes).__finalize__(self)
603
604 def swapaxes(self, axis1, axis2, copy=True):
e:\github\pandas\pandas\core\frame.pyc in __init__(self, data, index, columns, dtype, copy)
350 else:
351 mgr = self._init_ndarray(data, index, columns, dtype=dtype,
--> 352 copy=copy)
353 elif isinstance(data, (list, types.GeneratorType)):
354 if isinstance(data, types.GeneratorType):
e:\github\pandas\pandas\core\frame.pyc in _init_ndarray(self, values, index, columns, dtype, copy)
522 values = maybe_infer_to_datetimelike(values)
523
--> 524 return create_block_manager_from_blocks([values], [columns, index])
525
526 @property
e:\github\pandas\pandas\core\internals.pyc in create_block_manager_from_blocks(blocks, axes)
4378 placement=slice(0, len(axes[0])))]
4379
-> 4380 mgr = BlockManager(blocks, axes)
4381 mgr._consolidate_inplace()
4382 return mgr
e:\github\pandas\pandas\core\internals.pyc in __init__(self, blocks, axes, do_integrity_check, fastpath)
2880 raise AssertionError('Number of Block dimensions (%d) '
2881 'must equal number of axes (%d)' %
-> 2882 (block.ndim, self.ndim))
2883
2884 if do_integrity_check:
AssertionError: Number of Block dimensions (1) must equal number of axes (2)
Problem description
Transpose on dataframe with timestamps columns work. But, if columns consist of timestamps with time-zone, it fails.
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 2.7.12.final.0
python-bits: 64
OS: Windows
OS-release: 7
machine: AMD64
processor: Intel64 Family 6 Model 61 Stepping 4, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.21.0.dev+413.g7f93d2d
pytest: 3.2.0
pip: 9.0.1
setuptools: 36.2.7
Cython: 0.24.1
numpy: 1.12.1
scipy: 0.19.1
pyarrow: None
xarray: None
IPython: 5.1.0
sphinx: 1.4.6
patsy: 0.4.1
dateutil: 2.5.3
pytz: 2017.2
blosc: None
bottleneck: 1.2.0
tables: 3.2.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.3.2
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.3
lxml: 3.6.4
bs4: 4.5.1
html5lib: 0.999999999
sqlalchemy: 1.0.13
pymysql: 0.7.9.None
psycopg2: 2.7.3.1 (dt dec pq3 ext lo64)
jinja2: 2.8
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None