Description
Expected correct behavior for the same compartor dtypes
s = pd.Series([1.2, 2.3])
s.eq(1.2) == s.isin([1.2]) # True, True
s32 = pd.Series([1.2, 2.3], dtype="float32")
s32.eq(np.float32(1.2)) == s32.isin([np.float32(1.2)]) # True, True
Non expected behavior for mixed comparator dtypes
s32.eq(1.2) == s32.isin([1.2]) # False, True
# in detail
s32.eq(1.2) # True, False
s32.isin([1.2]) # False, False
In summary, eq()
and isin()
return different results when mixing comparator dtypes.
Problem description
Both methods eq()
and isin()
should return the same result. Here is the related SO article.
This issue might originate in numpy and perhaps is not directly pandas related (see here for more). Scalar comparison (equivalent to eq()
) and array comparison (equivalent to isin()
) comparison yield different results for mixed comparator dtypes in numpy, too.
Output of pd.show_versions()
pandas: 0.20.2
pytest: None
pip: 9.0.1
setuptools: 36.0.1
Cython: 0.25.2
numpy: 1.13.1
scipy: 0.19.1
xarray: None
IPython: 6.1.0
sphinx: None
patsy: None
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.999999999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None