Closed
Description
Code Sample, a copy-pastable example if possible
import pandas as pd
import numpy as np
index = pd.DatetimeIndex(['2017-05-04', '2017-05-05', '2017-05-08', '2017-05-09',
'2017-05-10'],
dtype='datetime64[ns]',name = 'date', freq='B')
columns = pd.MultiIndex(levels=[['HSBA LN Equity', 'UCG IM Equity', 'ISP IM Equity'], ['LAST PRICE', 'HIGH', 'LOW']],
labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]])
data = np.array([[ 663.8, 672.5, 661.1, 15.97, 16.02, 15.49, 2.76, 2.768, 2.694],
[ 658.6, 663.9, 656.0, 16.22, 16.48, 15.77, 2.842, 2.868, 2.77 ],
[ 660.6, 664.1, 658.9, 16.01, 16.49, 15.94, 2.852, 2.898, 2.826],
[ 664.9, 669.2, 662.5, 15.90, 16.41, 15.90, 2.848, 2.898, 2.842],
[ 670.9, 673.4, 663.8, 16.09, 16.15, 15.59, 2.85, 2.888, 2.802]])
df = pd.DataFrame(data, columns=columns, index = index)
Problem description
Since switching to 0.20.1, when using df.stack(0)
, the output looks like this:
HIGH LAST PRICE LOW
date
2017-05-04 HSBA LN Equity 672.500 663.800 661.100
UCG IM Equity 2.768 2.760 2.694
ISP IM Equity 16.020 15.970 15.490
2017-05-05 HSBA LN Equity 663.900 658.600 656.000
UCG IM Equity 2.868 2.842 2.770
ISP IM Equity 16.480 16.220 15.770
2017-05-08 HSBA LN Equity 664.100 660.600 658.900
UCG IM Equity 2.898 2.852 2.826
ISP IM Equity 16.490 16.010 15.940
2017-05-09 HSBA LN Equity 669.200 664.900 662.500
UCG IM Equity 2.898 2.848 2.842
ISP IM Equity 16.410 15.900 15.900
2017-05-10 HSBA LN Equity 673.400 670.900 663.800
UCG IM Equity 2.888 2.850 2.802
ISP IM Equity 16.150 16.090 15.590
The columns change order and the tickers no longer correspond to the correct prices.
` Expected Output
0.19.2 maintains the correct hierarchy.
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.6.1.final.0
python-bits: 64
OS: Darwin
OS-release: 16.5.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.20.1
pytest: 3.0.5
pip: 9.0.1
setuptools: 35.0.1
Cython: 0.25.2
numpy: 1.12.1
scipy: 0.19.0
xarray: None
IPython: 6.0.0
sphinx: 1.5.5
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.0
tables: 3.3.0
numexpr: 2.6.2
feather: None
matplotlib: 2.0.1
openpyxl: 2.4.1
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.2
bs4: 4.5.3
html5lib: 0.999999999
sqlalchemy: 1.1.5
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: 0.2.1