Skip to content

Weird behavior using nlargest/nsmallest when there are the n smallest/largest values are identical #15297

Closed
@RogerThomas

Description

@RogerThomas

Code Sample, a copy-pastable example if possible

python -c "import pandas as pd; df = pd.DataFrame(dict(a=[1, 1, 2, 3], b=[1, 2, 3, 4])); print(df.nsmallest(2, 'a'))"

Problem description

When using nlargest/nsmallest and the n largest / smallest values are identical, the method seems to return the dataframe concatenated with the filtered version of itself.
Furthermore if all values are identical, you get the full dataframe concatenated with itself, regardless of the choice of n

Expected Output

Not really sure, I guess in the example above you should simply get a dataframe that looks like this
pd.DataFrame(dict(a=[1, 1], b=[1, 2]))
however if you were to have
df = pd.DataFrame(dict(a=[1, 1, 1, 1], b=[1, 2, 3, 4]))
and asked for
df.nlargest(2, 'a') you should again get
pd.DataFrame(dict(a=[1, 1], b=[1, 2]))

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 2.7.12.final.0 python-bits: 64 OS: Linux OS-release: 4.8.0-34-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_IE.UTF-8 LOCALE: None.None

pandas: 0.19.2
nose: 1.3.7
pip: 9.0.1
setuptools: 28.3.0
Cython: 0.23.4
numpy: 1.12.0
scipy: 0.16.1
statsmodels: 0.6.1
xarray: None
IPython: None
sphinx: 1.3.1
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: None
tables: 3.2.0
numexpr: 2.4.6
matplotlib: 1.5.0
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
httplib2: 0.9.2
apiclient: None
sqlalchemy: 1.0.9
pymysql: None
psycopg2: None
jinja2: 2.8
boto: 2.38.0
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugReshapingConcat, Merge/Join, Stack/Unstack, Explode

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions