Description
Code Sample
import pandas as pd
print pd.DataFrame(data=[[1,2,3]], columns=['A', 'B', 'C'])\
.groupby(['A', 'B'])\
.sum()\
.reset_index()\
.columns\
.tolist()
# ['A', 'B', 'C']
print pd.DataFrame(data=[], columns=['A', 'B', 'C'])\
.groupby(['A'])\
.sum()\
.reset_index()\
.columns\
.tolist()
# ['A', 'B', 'C']
print pd.DataFrame(data=[], columns=['A', 'B', 'C'])\
.groupby(['A', 'B'])\
.sum()\
.reset_index()\
.columns\
.tolist()
# ['index']
Problem description
As the original list of columns is lost in the second case, I have to handle empty data frames differently, or add columns back by myself, both of which are inconvenient.
Expected Output
The list of columns is expected to be equal to the original one from data frame
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 2.7.12.final.0
python-bits: 64
OS: Linux
OS-release: 4.4.0-57-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: None.None
pandas: 0.19.1
nose: 1.3.7
pip: 9.0.1
setuptools: 28.8.0
Cython: None
numpy: 1.11.2
scipy: None
statsmodels: None
xarray: None
IPython: 5.1.0
sphinx: None
patsy: None
dateutil: 2.6.0
pytz: 2016.7
blosc: None
bottleneck: None
tables: None
numexpr: None
matplotlib: 1.5.3
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
httplib2: 0.9.2
apiclient: None
sqlalchemy: 1.1.4
pymysql: None
psycopg2: 2.6.2 (dt dec pq3 ext lo64)
jinja2: 2.8
boto: None
pandas_datareader: None