Description
A small, complete example of the issue
As called out in #14381, if dtype
is not specified, values of None
should be coerced to np.nan
. However, when a list of only None
is passed to data
, the None
remains.
>>> pd.DataFrame([None])
0
0 None
>>> pd.DataFrame([None, None])
0
0 None
1 None
Expected Output
>>> pd.DataFrame([None])
0
0 NaN
>>> pd.DataFrame([None, None])
0
0 NaN
1 NaN
Output of pd.show_versions()
commit: None
python: 2.7.11.final.0
python-bits: 64
OS: Linux
OS-release: 3.16.0-77-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: None.None
pandas: 0.19.0
nose: 1.3.4
pip: 8.1.2
setuptools: 5.8
Cython: 0.21
numpy: 1.11.2
scipy: 0.16.1
statsmodels: 0.6.1
xarray: None
IPython: 4.0.0
sphinx: 1.2.3
patsy: 0.3.0
dateutil: 2.5.3
pytz: 2016.7
blosc: None
bottleneck: None
tables: 3.1.1
numexpr: 2.3.1
matplotlib: 1.5.0
openpyxl: 1.8.5
xlrd: 0.9.3
xlwt: 0.7.5
xlsxwriter: 0.5.7
lxml: 3.4.0
bs4: 4.3.2
html5lib: None
httplib2: 0.9.1
apiclient: None
sqlalchemy: 0.9.7
pymysql: None
psycopg2: 2.6.1 (dt dec pq3 ext lo64)
jinja2: 2.7.3
boto: 2.32.1
pandas_datareader: None