Skip to content

sample not using numpy's random state #13143

Closed
@ariddell

Description

@ariddell

After fixing a random seed with numpy.random.seed, I expect sample to yield the same results.

Expected behavior of numpy.random.choice but found something different. Here is pandas:

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: df = pd.DataFrame(np.arange(1000))
In [12]: np.random.seed(5); df.sample(2)
Out[12]: 
       0
824  824
225  225

In [13]: np.random.seed(5); df.sample(2)
Out[13]: 
       0
182  182
586  586

Whereas numpy.random.choice is consistent

In [6]: np.random.seed(5); np.random.choice(1000)
Out[6]: 867

In [7]: np.random.seed(5); np.random.choice(1000)
Out[7]: 867

output of pd.show_versions()

In [8]: pd.show_versions()

INSTALLED VERSIONS
------------------
commit: None
python: 3.4.3.final.0
python-bits: 64
OS: Linux
OS-release: 3.16.0-67-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8

pandas: 0.18.1
nose: 1.3.1
pip: 8.1.1
setuptools: 18.4
Cython: 0.23.4
numpy: 1.11.0
scipy: 0.16.1
statsmodels: 0.6.1
xarray: None
IPython: 4.0.1
sphinx: 1.3.1
patsy: 0.4.0
dateutil: 2.5.3
pytz: 2016.4
blosc: None
bottleneck: None
tables: 3.2.2
numexpr: 2.4.4
matplotlib: 1.5.0
openpyxl: None
xlrd: 0.9.4
xlwt: None
xlsxwriter: None
lxml: None
bs4: 4.2.1
html5lib: 0.999
httplib2: None
apiclient: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.8
boto: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Compatpandas objects compatability with Numpy or Python functionsNumeric OperationsArithmetic, Comparison, and Logical operations

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions