Closed
Description
The DataFrame.describe() method docs seem to indicate that you can pass percentiles=None to not compute any percentiles, however by default it still computes 25%, 50% and 75%. The best I can do is pass an empty list to only compute the 50% percentile. I would think that passing an empty list would return no percentile computations.
Should we allow passing an empty list to not compute any percentiles?
pandas 0.17.1
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: df = pd.DataFrame(np.random.randn(10,5))
In [4]: df.describe(percentiles=None)
Out[4]:
0 1 2 3 4 5
count 10.000000 10.000000 10.000000 10.000000 10.000000 10.000000
mean -0.116736 -0.160728 0.066763 -0.068867 -0.242050 0.390091
std 0.771704 0.837520 0.875747 0.955985 1.093919 0.923464
min -1.347786 -1.140541 -1.297533 -1.347824 -2.085290 -0.825807
25% -0.580527 -0.613640 -0.558291 -0.538433 -0.836046 -0.275567
50% -0.261526 -0.395307 0.007595 -0.248025 0.000515 0.314278
75% 0.329780 0.154053 0.708768 0.407732 0.366278 1.192338
max 1.285276 1.649528 1.485076 1.697162 1.551388 1.762939
In [15]: df.describe(percentiles=[])
Out[15]:
0 1 2 3 4 5
count 10.000000 10.000000 10.000000 10.000000 10.000000 10.000000
mean -0.116736 -0.160728 0.066763 -0.068867 -0.242050 0.390091
std 0.771704 0.837520 0.875747 0.955985 1.093919 0.923464
min -1.347786 -1.140541 -1.297533 -1.347824 -2.085290 -0.825807
50% -0.261526 -0.395307 0.007595 -0.248025 0.000515 0.314278
max 1.285276 1.649528 1.485076 1.697162 1.551388 1.762939