Closed
Description
df1 = pd.DataFrame([[1, 1]], columns=['x','x'])
df2 = pd.DataFrame([[1, 1]], columns=['x','y'])
pd.merge(df1, df2, on='x')
Results in:
Traceback (most recent call last):
File "test.py", line 5, in <module>
m = pd.merge(df1, df2, on='x')
File "/usr/lib/python3/dist-packages/pandas/tools/merge.py", line 35, in merge
return op.get_result()
File "/usr/lib/python3/dist-packages/pandas/tools/merge.py", line 196, in get_result
join_index, left_indexer, right_indexer = self._get_join_info()
File "/usr/lib/python3/dist-packages/pandas/tools/merge.py", line 324, in _get_join_info
sort=self.sort, how=self.how)
File "/usr/lib/python3/dist-packages/pandas/tools/merge.py", line 516, in _get_join_indexers
llab, rlab, shape = map(list, zip( * map(fkeys, left_keys, right_keys)))
File "/usr/lib/python3/dist-packages/pandas/tools/merge.py", line 681, in _factorize_keys
llab = rizer.factorize(lk)
File "pandas/hashtable.pyx", line 850, in pandas.hashtable.Int64Factorizer.factorize (pandas/hashtable.c:15601)
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)
See #11754