Skip to content

PERF: mutli-index selection vs repeated selections #10287

Closed
@jreback

Description

@jreback

from SO

idx = pd.IndexSlice

n=10000000
np.random.seed(1234)
mdt = pandas.DataFrame()
mdt['A'] = np.random.choice(range(10000,45000,1000), n)
mdt['B'] = np.random.choice(range(10,400), n)
mdt['C'] = np.random.choice(range(1,150), n)
mdt['D'] = np.random.choice(range(10000,45000), n)
mdt['x'] = np.random.choice(range(400), n)
mdt['y'] = np.random.choice(range(25), n)


test_A = 25000
test_B = 25
test_C = 40
test_D = 35000

eps_A = 5000
eps_B = 5
eps_C = 5
eps_D = 5000

mdt2 = mdt.set_index(['A','B','C','D']).sortlevel()

selection

    In [106]: %timeit  mdt2.loc[idx[test_A-eps_A:test_A+eps_A,test_B-eps_B:test_B+eps_B,test_C-eps_C:test_C+eps_C,test_D-eps_D:test_D+eps_D],:]
    1 loops, best of 3: 4.34 s per loop

Repeated selection

    In [105]: %timeit mdt2.loc[idx[test_A-eps_A:test_A+eps_A],:].loc[idx[:,test_B-eps_B:test_B+eps_B],:].loc[idx[:,:,test_C-eps_C:test_C+eps_C],:].loc[idx[:,:,:,test_D-eps_D:test_D+eps_D],:]
    10 loops, best of 3: 140 ms per loop

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions