@@ -4837,7 +4837,7 @@ def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
4837
4837
4838
4838
* 0 or 'index': apply function to each column.
4839
4839
* 1 or 'columns': apply function to each row.
4840
- broadcast : boolean , optional
4840
+ broadcast : bool , optional
4841
4841
Only relevant for aggregation functions:
4842
4842
4843
4843
* `False` or `None` : returns a Series whose length is the length
@@ -4850,14 +4850,14 @@ def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
4850
4850
This argument will be removed in a future version, replaced
4851
4851
by result_type='broadcast'.
4852
4852
4853
- raw : boolean , default False
4853
+ raw : bool , default False
4854
4854
* `False` : passes each row or column as a Series to the
4855
4855
function.
4856
4856
* `True` : the passed function will receive ndarray objects
4857
4857
instead.
4858
4858
If you are just applying a NumPy reduction function this will
4859
4859
achieve much better performance.
4860
- reduce : boolean or `None`, default `None`
4860
+ reduce : bool or `None`, default `None`
4861
4861
Try to apply reduction procedures. If the `DataFrame` is empty,
4862
4862
:meth:`apply` will use reduce to determine whether the result
4863
4863
should be a Series or a `DataFrame`. If ``reduce is None`` (the
0 commit comments