@@ -4824,7 +4824,7 @@ def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
4824
4824
Objects passed to the function are Series objects having as index
4825
4825
either the DataFrame's index (``axis=0``)
4826
4826
or the DataFrame's columns (``axis=1``).
4827
- If `result_type` is None, the final return type is the return
4827
+ If ``result_type is None`` , the final return type is the return
4828
4828
type of the applied function.
4829
4829
Otherwise, it depends on the `result_type` argument.
4830
4830
@@ -4857,10 +4857,10 @@ def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
4857
4857
instead.
4858
4858
If you are just applying a NumPy reduction function this will
4859
4859
achieve much better performance.
4860
- reduce : boolean or None, default None
4860
+ reduce : boolean or ` None` , default ` None`
4861
4861
Try to apply reduction procedures. If the `DataFrame` is empty,
4862
4862
:meth:`apply` will use reduce to determine whether the result
4863
- should be a Series or a `DataFrame`. If reduce is None (the
4863
+ should be a Series or a `DataFrame`. If `` reduce is None`` (the
4864
4864
default), :meth:`apply`'s return value will be guessed by calling
4865
4865
func on an empty Series
4866
4866
(note: while guessing, exceptions raised by `func` will be
@@ -4872,7 +4872,7 @@ def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
4872
4872
This argument will be removed in a future version, replaced
4873
4873
by result_type='reduce'.
4874
4874
4875
- result_type : {'expand', 'reduce', 'broadcast', None}
4875
+ result_type : {'expand', 'reduce', 'broadcast', ` None` }
4876
4876
These only act when ``axis=1`` (columns):
4877
4877
4878
4878
* 'expand' : list-like results will be turned into columns.
0 commit comments