|
25 | 25 | from pandas.io.formats.format import format_percentiles
|
26 | 26 |
|
27 | 27 | if TYPE_CHECKING:
|
28 |
| - from pandas import Series |
| 28 | + from pandas import DataFrame, Series |
29 | 29 |
|
30 | 30 |
|
31 | 31 | def describe_ndframe(
|
@@ -59,52 +59,145 @@ def describe_ndframe(
|
59 | 59 | -------
|
60 | 60 | Dataframe or series description.
|
61 | 61 | """
|
62 |
| - if obj.ndim == 2 and obj.columns.size == 0: |
63 |
| - raise ValueError("Cannot describe a DataFrame without columns") |
64 |
| - |
65 |
| - percentiles = _refine_percentiles(percentiles) |
| 62 | + percentiles = refine_percentiles(percentiles) |
66 | 63 |
|
67 | 64 | if obj.ndim == 1:
|
68 |
| - series = cast("Series", obj) |
69 |
| - # Incompatible return value type |
70 |
| - # (got "Series", expected "FrameOrSeries") [return-value] |
71 |
| - return describe_1d( |
72 |
| - series, |
| 65 | + result_series = describe_series( |
| 66 | + cast("Series", obj), |
73 | 67 | percentiles,
|
74 | 68 | datetime_is_numeric,
|
75 |
| - is_series=True, |
76 |
| - ) # type:ignore[return-value] |
77 |
| - elif (include is None) and (exclude is None): |
78 |
| - # when some numerics are found, keep only numerics |
79 |
| - default_include = [np.number] |
80 |
| - if datetime_is_numeric: |
81 |
| - default_include.append("datetime") |
82 |
| - data = obj.select_dtypes(include=default_include) |
83 |
| - if len(data.columns) == 0: |
84 |
| - data = obj |
85 |
| - elif include == "all": |
86 |
| - if exclude is not None: |
87 |
| - msg = "exclude must be None when include is 'all'" |
88 |
| - raise ValueError(msg) |
89 |
| - data = obj |
90 |
| - else: |
91 |
| - data = obj.select_dtypes(include=include, exclude=exclude) |
| 69 | + ) |
| 70 | + return cast(FrameOrSeries, result_series) |
| 71 | + |
| 72 | + frame = cast("DataFrame", obj) |
| 73 | + |
| 74 | + if frame.ndim == 2 and frame.columns.size == 0: |
| 75 | + raise ValueError("Cannot describe a DataFrame without columns") |
| 76 | + |
| 77 | + result_frame = describe_frame( |
| 78 | + frame=frame, |
| 79 | + include=include, |
| 80 | + exclude=exclude, |
| 81 | + percentiles=percentiles, |
| 82 | + datetime_is_numeric=datetime_is_numeric, |
| 83 | + ) |
| 84 | + return cast(FrameOrSeries, result_frame) |
| 85 | + |
| 86 | + |
| 87 | +def describe_series( |
| 88 | + series: "Series", |
| 89 | + percentiles: Sequence[float], |
| 90 | + datetime_is_numeric: bool, |
| 91 | +) -> "Series": |
| 92 | + """Describe series. |
| 93 | +
|
| 94 | + The reason for the delegation to ``describe_1d`` only: |
| 95 | + to allow for a proper stacklevel of the FutureWarning. |
| 96 | +
|
| 97 | + Parameters |
| 98 | + ---------- |
| 99 | + series : Series |
| 100 | + Series to be described. |
| 101 | + percentiles : list-like of numbers |
| 102 | + The percentiles to include in the output. |
| 103 | + datetime_is_numeric : bool, default False |
| 104 | + Whether to treat datetime dtypes as numeric. |
| 105 | +
|
| 106 | + Returns |
| 107 | + ------- |
| 108 | + Series |
| 109 | + """ |
| 110 | + return describe_1d( |
| 111 | + series, |
| 112 | + percentiles, |
| 113 | + datetime_is_numeric, |
| 114 | + is_series=True, |
| 115 | + ) |
| 116 | + |
| 117 | + |
| 118 | +def describe_frame( |
| 119 | + frame: "DataFrame", |
| 120 | + include: Optional[Union[str, Sequence[str]]], |
| 121 | + exclude: Optional[Union[str, Sequence[str]]], |
| 122 | + percentiles: Sequence[float], |
| 123 | + datetime_is_numeric: bool, |
| 124 | +) -> "DataFrame": |
| 125 | + """Describe DataFrame. |
| 126 | +
|
| 127 | + Parameters |
| 128 | + ---------- |
| 129 | + frame : DataFrame |
| 130 | + DataFrame to be described. |
| 131 | + include : 'all', list-like of dtypes or None (default), optional |
| 132 | + A white list of data types to include in the result. |
| 133 | + exclude : list-like of dtypes or None (default), optional, |
| 134 | + A black list of data types to omit from the result. |
| 135 | + percentiles : list-like of numbers |
| 136 | + The percentiles to include in the output. |
| 137 | + datetime_is_numeric : bool, default False |
| 138 | + Whether to treat datetime dtypes as numeric. |
| 139 | +
|
| 140 | + Returns |
| 141 | + ------- |
| 142 | + DataFrame |
| 143 | + """ |
| 144 | + data = select_columns( |
| 145 | + frame=frame, |
| 146 | + include=include, |
| 147 | + exclude=exclude, |
| 148 | + datetime_is_numeric=datetime_is_numeric, |
| 149 | + ) |
92 | 150 |
|
93 | 151 | ldesc = [
|
94 | 152 | describe_1d(s, percentiles, datetime_is_numeric, is_series=False)
|
95 | 153 | for _, s in data.items()
|
96 | 154 | ]
|
97 |
| - # set a convenient order for rows |
| 155 | + |
| 156 | + col_names = reorder_columns(ldesc) |
| 157 | + d = concat( |
| 158 | + [x.reindex(col_names, copy=False) for x in ldesc], |
| 159 | + axis=1, |
| 160 | + sort=False, |
| 161 | + ) |
| 162 | + d.columns = data.columns.copy() |
| 163 | + return d |
| 164 | + |
| 165 | + |
| 166 | +def reorder_columns(ldesc: Sequence["Series"]) -> List[Hashable]: |
| 167 | + """Set a convenient order for rows for display.""" |
98 | 168 | names: List[Hashable] = []
|
99 | 169 | ldesc_indexes = sorted((x.index for x in ldesc), key=len)
|
100 | 170 | for idxnames in ldesc_indexes:
|
101 | 171 | for name in idxnames:
|
102 | 172 | if name not in names:
|
103 | 173 | names.append(name)
|
| 174 | + return names |
104 | 175 |
|
105 |
| - d = concat([x.reindex(names, copy=False) for x in ldesc], axis=1, sort=False) |
106 |
| - d.columns = data.columns.copy() |
107 |
| - return d |
| 176 | + |
| 177 | +def select_columns( |
| 178 | + frame: "DataFrame", |
| 179 | + include: Optional[Union[str, Sequence[str]]], |
| 180 | + exclude: Optional[Union[str, Sequence[str]]], |
| 181 | + datetime_is_numeric: bool, |
| 182 | +) -> "DataFrame": |
| 183 | + """Select columns to be described.""" |
| 184 | + if (include is None) and (exclude is None): |
| 185 | + # when some numerics are found, keep only numerics |
| 186 | + default_include = [np.number] |
| 187 | + if datetime_is_numeric: |
| 188 | + default_include.append("datetime") |
| 189 | + data = frame.select_dtypes(include=default_include) |
| 190 | + if len(data.columns) == 0: |
| 191 | + data = frame |
| 192 | + elif include == "all": |
| 193 | + if exclude is not None: |
| 194 | + msg = "exclude must be None when include is 'all'" |
| 195 | + raise ValueError(msg) |
| 196 | + data = frame |
| 197 | + else: |
| 198 | + data = frame.select_dtypes(include=include, exclude=exclude) |
| 199 | + |
| 200 | + return data |
108 | 201 |
|
109 | 202 |
|
110 | 203 | def describe_numeric_1d(series: "Series", percentiles: Sequence[float]) -> "Series":
|
@@ -150,9 +243,9 @@ def describe_categorical_1d(data: "Series", is_series: bool) -> "Series":
|
150 | 243 | top, freq = objcounts.index[0], objcounts.iloc[0]
|
151 | 244 | if is_datetime64_any_dtype(data.dtype):
|
152 | 245 | if is_series:
|
153 |
| - stacklevel = 5 |
154 |
| - else: |
155 | 246 | stacklevel = 6
|
| 247 | + else: |
| 248 | + stacklevel = 7 |
156 | 249 | warnings.warn(
|
157 | 250 | "Treating datetime data as categorical rather than numeric in "
|
158 | 251 | "`.describe` is deprecated and will be removed in a future "
|
@@ -253,7 +346,7 @@ def describe_1d(
|
253 | 346 | return describe_categorical_1d(data, is_series)
|
254 | 347 |
|
255 | 348 |
|
256 |
| -def _refine_percentiles(percentiles: Optional[Sequence[float]]) -> Sequence[float]: |
| 349 | +def refine_percentiles(percentiles: Optional[Sequence[float]]) -> Sequence[float]: |
257 | 350 | """Ensure that percentiles are unique and sorted.
|
258 | 351 |
|
259 | 352 | Parameters
|
|
0 commit comments