Closed
Description
As reported in xlwt:
Here is an examination of numpy behaviour (Python 2.7.3, numpy 1.6.2)
>>> import numpy
>>> data = [t(123456) for t in (numpy.int32, numpy.int64, numpy.float64)]
>>> [type(d) for d in data]
[<type 'numpy.int32'>, <type 'numpy.int64'>, <type 'numpy.float64'>]
>>> data
[123456, 123456, 123456.0]
>>> check_types = (int, long, float)
>>> for d in data:
... for c in check_types:
... print type(d), repr(c), isinstance(d, c)
...
<type 'numpy.int32'> <type 'int'> True
<type 'numpy.int32'> <type 'long'> False
<type 'numpy.int32'> <type 'float'> False
<type 'numpy.int64'> <type 'int'> False
<type 'numpy.int64'> <type 'long'> False
<type 'numpy.int64'> <type 'float'> False
<type 'numpy.float64'> <type 'int'> False
<type 'numpy.float64'> <type 'long'> False
<type 'numpy.float64'> <type 'float'> True
>>>
Looks like numpy has done the work to make its int32 and float64 recognisable by other software but not int64.