Skip to content

Fix/fnirtflow #877

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Jul 17, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGES
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ Next Release
* ENH: New data grabbing interface that works over SSH connections, SSHDataGrabber
* ENH: New color mode for write_graph
* FIX: MRTrix tracking algorithms were ignoring mask parameters.
* FIX: FNIRT registration pathway and associated OpenFMRI example script

Release 0.9.2 (January 31, 2014)
============
Expand Down
29 changes: 20 additions & 9 deletions examples/fmri_openfmri.py
Original file line number Diff line number Diff line change
Expand Up @@ -305,33 +305,41 @@ def num_copes(files):
wf.connect(preproc, 'outputspec.mean', registration, 'inputspec.mean_image')
wf.connect(datasource, 'anat', registration, 'inputspec.anatomical_image')
registration.inputs.inputspec.target_image = fsl.Info.standard_image('MNI152_T1_2mm.nii.gz')
registration.inputs.inputspec.target_image_brain = fsl.Info.standard_image('MNI152_T1_2mm_brain.nii.gz')
registration.inputs.inputspec.config_file = 'T1_2_MNI152_2mm'

def merge_files(copes, varcopes):
def merge_files(copes, varcopes, zstats):
out_files = []
splits = []
out_files.extend(copes)
splits.append(len(copes))
out_files.extend(varcopes)
splits.append(len(varcopes))
out_files.extend(zstats)
splits.append(len(zstats))
return out_files, splits

mergefunc = pe.Node(niu.Function(input_names=['copes', 'varcopes'],
mergefunc = pe.Node(niu.Function(input_names=['copes', 'varcopes',
'zstats'],
output_names=['out_files', 'splits'],
function=merge_files),
name='merge_files')
wf.connect([(fixed_fx.get_node('outputspec'), mergefunc,
[('copes', 'copes'),
('varcopes', 'varcopes'),
('zstats', 'zstats'),
])])
wf.connect(mergefunc, 'out_files', registration, 'inputspec.source_files')

def split_files(in_files, splits):
copes = in_files[:splits[1]]
varcopes = in_files[splits[1]:]
return copes, varcopes
copes = in_files[:splits[0]]
varcopes = in_files[splits[0]:(splits[0] + splits[1])]
zstats = in_files[(splits[0] + splits[1]):]
return copes, varcopes, zstats

splitfunc = pe.Node(niu.Function(input_names=['in_files', 'splits'],
output_names=['copes', 'varcopes'],
output_names=['copes', 'varcopes',
'zstats'],
function=split_files),
name='split_files')
wf.connect(mergefunc, 'splits', splitfunc, 'splits')
Expand All @@ -347,7 +355,7 @@ def get_subs(subject_id, conds, model_id, task_id):
subs = [('_subject_id_%s_' % subject_id, '')]
subs.append(('_model_id_%d' % model_id, 'model%03d' %model_id))
subs.append(('task_id_%d/' % task_id, '/task%03d_' % task_id))
subs.append(('bold_dtype_mcf_mask_smooth_mask_gms_tempfilt_mean_warp_warp',
subs.append(('bold_dtype_mcf_mask_smooth_mask_gms_tempfilt_mean_warp',
'mean'))
subs.append(('bold_dtype_mcf_mask_smooth_mask_gms_tempfilt_mean_flirt',
'affine'))
Expand All @@ -358,10 +366,12 @@ def get_subs(subject_id, conds, model_id, task_id):
subs.append(('_flameo%d/zstat1.' % i, 'zstat%02d.' % (i + 1)))
subs.append(('_flameo%d/tstat1.' % i, 'tstat%02d.' % (i + 1)))
subs.append(('_flameo%d/res4d.' % i, 'res4d%02d.' % (i + 1)))
subs.append(('_warpall%d/cope1_warp_warp.' % i,
subs.append(('_warpall%d/cope1_warp.' % i,
'cope%02d.' % (i + 1)))
subs.append(('_warpall%d/varcope1_warp_warp.' % (len(conds) + i),
subs.append(('_warpall%d/varcope1_warp.' % (len(conds) + i),
'varcope%02d.' % (i + 1)))
subs.append(('_warpall%d/zstat1_warp.' % (2 * len(conds) + i),
'zstat%02d.' % (i + 1)))
return subs

subsgen = pe.Node(niu.Function(input_names=['subject_id', 'conds',
Expand All @@ -388,6 +398,7 @@ def get_subs(subject_id, conds, model_id, task_id):
wf.connect([(splitfunc, datasink,
[('copes', 'copes.mni'),
('varcopes', 'varcopes.mni'),
('zstats', 'zstats.mni'),
])])
wf.connect(registration, 'outputspec.transformed_mean', datasink, 'mean.mni')
wf.connect(registration, 'outputspec.func2anat_transform', datasink, 'xfm.mean2anat')
Expand Down
45 changes: 23 additions & 22 deletions nipype/workflows/fmri/fsl/preprocess.py
Original file line number Diff line number Diff line change
Expand Up @@ -1104,7 +1104,9 @@ def create_reg_workflow(name='registration'):
inputnode = pe.Node(interface=util.IdentityInterface(fields=['source_files',
'mean_image',
'anatomical_image',
'target_image']),
'target_image',
'target_image_brain',
'config_file']),
name='inputspec')
outputnode = pe.Node(interface=util.IdentityInterface(fields=['func2anat_transform',
'anat2target_transform',
Expand Down Expand Up @@ -1154,15 +1156,20 @@ def create_reg_workflow(name='registration'):
register.connect(inputnode, 'mean_image', mean2anatbbr, 'in_file')
register.connect(binarize, 'out_file', mean2anatbbr, 'wm_seg')
register.connect(inputnode, 'anatomical_image', mean2anatbbr, 'reference')
register.connect(mean2anat, 'out_matrix_file', mean2anatbbr, 'in_matrix_file')
register.connect(mean2anat, 'out_matrix_file',
mean2anatbbr, 'in_matrix_file')

"""
Calculate affine transform from anatomical to target
"""

anat2target_affine = pe.Node(fsl.FLIRT(), name='anat2target_linear')
register.connect(inputnode, 'anatomical_image', anat2target_affine, 'in_file')
register.connect(inputnode, 'target_image', anat2target_affine, 'reference')
anat2target_affine.inputs.searchr_x = [-180, 180]
anat2target_affine.inputs.searchr_y = [-180, 180]
anat2target_affine.inputs.searchr_z = [-180, 180]
register.connect(stripper, 'out_file', anat2target_affine, 'in_file')
register.connect(inputnode, 'target_image_brain',
anat2target_affine, 'reference')

"""
Calculate nonlinear transform from anatomical to target
Expand All @@ -1172,22 +1179,20 @@ def create_reg_workflow(name='registration'):
anat2target_nonlinear.inputs.fieldcoeff_file=True
register.connect(anat2target_affine, 'out_matrix_file',
anat2target_nonlinear, 'affine_file')
anat2target_nonlinear.inputs.warp_resolution = (8, 8, 8)
register.connect(inputnode, 'anatomical_image', anat2target_nonlinear, 'in_file')
register.connect(inputnode, 'anatomical_image',
anat2target_nonlinear, 'in_file')
register.connect(inputnode, 'config_file',
anat2target_nonlinear, 'config_file')
register.connect(inputnode, 'target_image',
anat2target_nonlinear, 'ref_file')

"""
Transform the mean image. First to anatomical and then to target
"""

warp2anat = pe.Node(fsl.ApplyWarp(interp='spline'), name='warp2anat')
register.connect(inputnode, 'mean_image', warp2anat, 'in_file')
register.connect(inputnode, 'anatomical_image', warp2anat, 'ref_file')
register.connect(mean2anatbbr, 'out_matrix_file', warp2anat, 'premat')

warpmean = warp2anat.clone(name='warpmean')
register.connect(warp2anat, 'out_file', warpmean, 'in_file')
warpmean = pe.Node(fsl.ApplyWarp(interp='spline'), name='warpmean')
register.connect(inputnode, 'mean_image', warpmean, 'in_file')
register.connect(mean2anatbbr, 'out_matrix_file', warpmean, 'premat')
register.connect(inputnode, 'target_image', warpmean, 'ref_file')
register.connect(anat2target_nonlinear, 'fieldcoeff_file',
warpmean, 'field_file')
Expand All @@ -1196,15 +1201,11 @@ def create_reg_workflow(name='registration'):
Transform the remaining images. First to anatomical and then to target
"""

warpall2anat = pe.MapNode(fsl.ApplyWarp(interp='spline'),
iterfield=['in_file'],
name='warpall2anat')
register.connect(inputnode, 'source_files', warpall2anat, 'in_file')
register.connect(inputnode, 'anatomical_image', warpall2anat, 'ref_file')
register.connect(mean2anatbbr, 'out_matrix_file', warpall2anat, 'premat')

warpall = warpall2anat.clone(name='warpall')
register.connect(warpall2anat, 'out_file', warpall, 'in_file')
warpall = pe.MapNode(fsl.ApplyWarp(interp='spline'),
iterfield=['in_file'],
name='warpall')
register.connect(inputnode, 'source_files', warpall, 'in_file')
register.connect(mean2anatbbr, 'out_matrix_file', warpall, 'premat')
register.connect(inputnode, 'target_image', warpall, 'ref_file')
register.connect(anat2target_nonlinear, 'fieldcoeff_file',
warpall, 'field_file')
Expand Down