Skip to content

ENH: Add new command line for BRAINSABC tool #1322

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 17, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGES
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
Next release
============

* ENH: Add new flags to the BRAINSABC for new featues (https://github.com/nipy/nipype/pull/1322)
* ENH: Provides a Nipype wrapper for ANTs DenoiseImage (https://github.com/nipy/nipype/pull/1291)
* FIX: Minor bugfix logging hash differences (https://github.com/nipy/nipype/pull/1298)
* FIX: Use released Prov python library (https://github.com/nipy/nipype/pull/1279)
Expand Down
35 changes: 35 additions & 0 deletions nipype/algorithms/tests/test_auto_ErrorMap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT
from ...testing import assert_equal
from ..metrics import ErrorMap


def test_ErrorMap_inputs():
input_map = dict(ignore_exception=dict(nohash=True,
usedefault=True,
),
in_ref=dict(mandatory=True,
),
in_tst=dict(mandatory=True,
),
mask=dict(),
metric=dict(mandatory=True,
usedefault=True,
),
out_map=dict(),
)
inputs = ErrorMap.input_spec()

for key, metadata in list(input_map.items()):
for metakey, value in list(metadata.items()):
yield assert_equal, getattr(inputs.traits()[key], metakey), value


def test_ErrorMap_outputs():
output_map = dict(distance=dict(),
out_map=dict(),
)
outputs = ErrorMap.output_spec()

for key, metadata in list(output_map.items()):
for metakey, value in list(metadata.items()):
yield assert_equal, getattr(outputs.traits()[key], metakey), value
47 changes: 47 additions & 0 deletions nipype/algorithms/tests/test_auto_Overlap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT
from ...testing import assert_equal
from ..misc import Overlap


def test_Overlap_inputs():
input_map = dict(bg_overlap=dict(mandatory=True,
usedefault=True,
),
ignore_exception=dict(nohash=True,
usedefault=True,
),
mask_volume=dict(),
out_file=dict(usedefault=True,
),
vol_units=dict(mandatory=True,
usedefault=True,
),
volume1=dict(mandatory=True,
),
volume2=dict(mandatory=True,
),
weighting=dict(usedefault=True,
),
)
inputs = Overlap.input_spec()

for key, metadata in list(input_map.items()):
for metakey, value in list(metadata.items()):
yield assert_equal, getattr(inputs.traits()[key], metakey), value


def test_Overlap_outputs():
output_map = dict(dice=dict(),
diff_file=dict(),
jaccard=dict(),
labels=dict(),
roi_di=dict(),
roi_ji=dict(),
roi_voldiff=dict(),
volume_difference=dict(),
)
outputs = Overlap.output_spec()

for key, metadata in list(output_map.items()):
for metakey, value in list(metadata.items()):
yield assert_equal, getattr(outputs.traits()[key], metakey), value
2 changes: 2 additions & 0 deletions nipype/interfaces/semtools/segmentation/specialized.py
Original file line number Diff line number Diff line change
Expand Up @@ -319,6 +319,8 @@ class BRAINSABCInputSpec(CommandLineInputSpec):
filterMethod = traits.Enum("None", "CurvatureFlow", "GradientAnisotropicDiffusion", "Median", desc="Filter method for preprocessing of registration", argstr="--filterMethod %s")
maxBiasDegree = traits.Int(desc="Maximum bias degree", argstr="--maxBiasDegree %d")
useKNN = traits.Bool(desc="Use the KNN stage of estimating posteriors.", argstr="--useKNN ")
purePlugsThreshold = traits.Float(desc="If this threshold value is greater than zero, only pure samples are used to compute the distributions in EM classification, and only pure samples are used for KNN training. The default value is set to 0, that means not using pure plugs. However, a value of 0.2 is suggested if you want to activate using pure plugs option.", argstr="--purePlugsThreshold %f")
numberOfSubSamplesInEachPlugArea = InputMultiPath(traits.Int, desc="Number of continous index samples taken at each direction of lattice space for each plug volume.", sep=",", argstr="--numberOfSubSamplesInEachPlugArea %s")
atlasWarpingOff = traits.Bool(desc="Deformable registration of atlas to subject", argstr="--atlasWarpingOff ")
gridSize = InputMultiPath(traits.Int, desc="Grid size for atlas warping with BSplines", sep=",", argstr="--gridSize %s")
defaultSuffix = traits.Str(argstr="--defaultSuffix %s")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,9 @@ def test_BRAINSABC_inputs():
medianFilterSize=dict(argstr='--medianFilterSize %s',
sep=',',
),
numberOfSubSamplesInEachPlugArea=dict(argstr='--numberOfSubSamplesInEachPlugArea %s',
sep=',',
),
numberOfThreads=dict(argstr='--numberOfThreads %d',
),
outputDir=dict(argstr='--outputDir %s',
Expand All @@ -72,6 +75,8 @@ def test_BRAINSABC_inputs():
),
posteriorTemplate=dict(argstr='--posteriorTemplate %s',
),
purePlugsThreshold=dict(argstr='--purePlugsThreshold %f',
),
restoreState=dict(argstr='--restoreState %s',
),
saveState=dict(argstr='--saveState %s',
Expand Down