Skip to content

[ENH] Remove warnings in tSNR calculation #1234

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Feb 3, 2016
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 27 additions & 23 deletions nipype/algorithms/misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -263,6 +263,14 @@ class TSNRInputSpec(BaseInterfaceInputSpec):
in_file = InputMultiPath(File(exists=True), mandatory=True,
desc='realigned 4D file or a list of 3D files')
regress_poly = traits.Range(low=1, desc='Remove polynomials')
tsnr_file = File('tsnr.nii.gz', usedefault=True, hash_files=False,
desc='output tSNR file')
mean_file = File('mean.nii.gz', usedefault=True, hash_files=False,
desc='output mean file')
stddev_file = File('stdev.nii.gz', usedefault=True, hash_files=False,
desc='output tSNR file')
detrended_file = File('detrend.nii.gz', usedefault=True, hash_files=False,
desc='input file after detrending')


class TSNROutputSpec(TraitedSpec):
Expand All @@ -288,24 +296,18 @@ class TSNR(BaseInterface):
input_spec = TSNRInputSpec
output_spec = TSNROutputSpec

def _gen_output_file_name(self, suffix=None):
_, base, ext = split_filename(self.inputs.in_file[0])
if suffix in ['mean', 'stddev']:
return os.path.abspath(base + "_tsnr_" + suffix + ext)
elif suffix in ['detrended']:
return os.path.abspath(base + "_" + suffix + ext)
else:
return os.path.abspath(base + "_tsnr" + ext)

def _run_interface(self, runtime):
img = nb.load(self.inputs.in_file[0])
header = img.header.copy()
vollist = [nb.load(filename) for filename in self.inputs.in_file]
data = np.concatenate([vol.get_data().reshape(
vol.shape[:3] + (-1,)) for vol in vollist], axis=3)
vol.get_shape()[:3] + (-1,)) for vol in vollist], axis=3)
data = data.nan_to_num()

if data.dtype.kind == 'i':
header.set_data_dtype(np.float32)
data = data.astype(np.float32)

if isdefined(self.inputs.regress_poly):
timepoints = img.shape[-1]
X = np.ones((timepoints, 1))
Expand All @@ -318,26 +320,28 @@ def _run_interface(self, runtime):
betas[1:, :, :, :], 0, 3)),
0, 4)
data = data - datahat
img = nb.Nifti1Image(data, img.affine, header)
nb.save(img, self._gen_output_file_name('detrended'))
img = nb.Nifti1Image(data, img.get_affine(), header)
nb.save(img, op.abspath(self.inputs.detrended_file))

meanimg = np.mean(data, axis=3)
stddevimg = np.std(data, axis=3)
tsnr = meanimg / stddevimg
img = nb.Nifti1Image(tsnr, img.affine, header)
nb.save(img, self._gen_output_file_name())
img = nb.Nifti1Image(meanimg, img.affine, header)
nb.save(img, self._gen_output_file_name('mean'))
img = nb.Nifti1Image(stddevimg, img.affine, header)
nb.save(img, self._gen_output_file_name('stddev'))
tsnr = np.zeros_like(meanimg)
tsnr[stddevimg > 1.e-3] = meanimg[stddevimg > 1.e-3] / stddevimg[stddevimg > 1.e-3]
img = nb.Nifti1Image(tsnr, img.get_affine(), header)
nb.save(img, op.abspath(self.inputs.tsnr_file))
img = nb.Nifti1Image(meanimg, img.get_affine(), header)
nb.save(img, op.abspath(self.inputs.mean_file))
img = nb.Nifti1Image(stddevimg, img.get_affine(), header)
nb.save(img, op.abspath(self.inputs.stddev_file))
return runtime

def _list_outputs(self):
outputs = self._outputs().get()
outputs['tsnr_file'] = self._gen_output_file_name()
outputs['mean_file'] = self._gen_output_file_name('mean')
outputs['stddev_file'] = self._gen_output_file_name('stddev')
for k in ['tsnr_file', 'mean_file', 'stddev_file']:
outputs[k] = op.abspath(getattr(self.inputs, k))

if isdefined(self.inputs.regress_poly):
outputs['detrended_file'] = self._gen_output_file_name('detrended')
outputs['detrended_file'] = op.abspath(self.inputs.detrended_file)
return outputs


Expand Down