-
Notifications
You must be signed in to change notification settings - Fork 13.7k
[LV] Compute register usage for interleaving on VPlan. #126437
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
11f674b
1d9d3f0
e564262
73260a8
0c2c8e1
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -992,7 +992,8 @@ class LoopVectorizationCostModel { | |
/// If interleave count has been specified by metadata it will be returned. | ||
/// Otherwise, the interleave count is computed and returned. VF and LoopCost | ||
/// are the selected vectorization factor and the cost of the selected VF. | ||
unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost); | ||
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, | ||
InstructionCost LoopCost); | ||
|
||
/// Memory access instruction may be vectorized in more than one way. | ||
/// Form of instruction after vectorization depends on cost. | ||
|
@@ -4871,8 +4872,233 @@ void LoopVectorizationCostModel::collectElementTypesForWidening() { | |
} | ||
} | ||
|
||
/// Estimate the register usage for \p Plan and vectorization factors in \p VFs | ||
/// by calculating the highest number of values that are live at a single | ||
/// location as a rough estimate. Returns the register usage for each VF in \p | ||
/// VFs. | ||
static SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> | ||
calculateRegisterUsage(VPlan &Plan, ArrayRef<ElementCount> VFs, | ||
const TargetTransformInfo &TTI, | ||
const SmallPtrSetImpl<const Value *> &ValuesToIgnore) { | ||
// Each 'key' in the map opens a new interval. The values | ||
// of the map are the index of the 'last seen' usage of the | ||
// recipe that is the key. | ||
using IntervalMap = SmallDenseMap<VPRecipeBase *, unsigned, 16>; | ||
|
||
// Maps indices to recipes. | ||
SmallVector<VPRecipeBase *, 64> Idx2Recipe; | ||
// Marks the end of each interval. | ||
IntervalMap EndPoint; | ||
// Saves the list of recipe indices that are used in the loop. | ||
SmallPtrSet<VPRecipeBase *, 8> Ends; | ||
// Saves the list of values that are used in the loop but are defined outside | ||
// the loop (not including non-recipe values such as arguments and | ||
// constants). | ||
SmallSetVector<VPValue *, 8> LoopInvariants; | ||
LoopInvariants.insert(&Plan.getVectorTripCount()); | ||
|
||
// We scan the loop in a topological order in order and assign a number to | ||
// each recipe. We use RPO to ensure that defs are met before their users. We | ||
// assume that each recipe that has in-loop users starts an interval. We | ||
// record every time that an in-loop value is used, so we have a list of the | ||
// first and last occurrences of each recipe. | ||
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( | ||
Plan.getVectorLoopRegion()); | ||
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { | ||
if (!VPBB->getParent()) | ||
break; | ||
for (VPRecipeBase &R : *VPBB) { | ||
Idx2Recipe.push_back(&R); | ||
|
||
// Save the end location of each USE. | ||
for (VPValue *U : R.operands()) { | ||
auto *DefR = U->getDefiningRecipe(); | ||
|
||
// Ignore non-recipe values such as arguments, constants, etc. | ||
// FIXME: Might need some motivation why these values are ignored. If | ||
// for example an argument is used inside the loop it will increase the | ||
// register pressure (so shouldn't we add it to LoopInvariants). | ||
if (!DefR && (!U->getLiveInIRValue() || | ||
!isa<Instruction>(U->getLiveInIRValue()))) | ||
continue; | ||
Comment on lines
+4917
to
+4923
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Does adding these values to the invariants list cause lots of extra work or issues that can't be done in this PR? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This just ports the code + FIXME from the original implementation to keep this as close to NFC as possible. Happy to remove the restriction as follow-up |
||
|
||
// If this recipe is outside the loop then record it and continue. | ||
if (!DefR) { | ||
LoopInvariants.insert(U); | ||
continue; | ||
} | ||
|
||
// Overwrite previous end points. | ||
EndPoint[DefR] = Idx2Recipe.size(); | ||
Ends.insert(DefR); | ||
} | ||
} | ||
if (VPBB == Plan.getVectorLoopRegion()->getExiting()) { | ||
// VPWidenIntOrFpInductionRecipes are used implicitly at the end of the | ||
// exiting block, where their increment will get materialized eventually. | ||
for (auto &R : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { | ||
if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { | ||
EndPoint[&R] = Idx2Recipe.size(); | ||
Ends.insert(&R); | ||
} | ||
} | ||
} | ||
} | ||
|
||
// Saves the list of intervals that end with the index in 'key'. | ||
using RecipeList = SmallVector<VPRecipeBase *, 2>; | ||
SmallDenseMap<unsigned, RecipeList, 16> TransposeEnds; | ||
|
||
// Next, we transpose the EndPoints into a multi map that holds the list of | ||
// intervals that *end* at a specific location. | ||
for (auto &Interval : EndPoint) | ||
TransposeEnds[Interval.second].push_back(Interval.first); | ||
|
||
SmallPtrSet<VPRecipeBase *, 8> OpenIntervals; | ||
SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> RUs(VFs.size()); | ||
SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); | ||
|
||
LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); | ||
|
||
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType()); | ||
|
||
const auto &TTICapture = TTI; | ||
auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { | ||
if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty) || | ||
(VF.isScalable() && | ||
!TTICapture.isElementTypeLegalForScalableVector(Ty))) | ||
sdesmalen-arm marked this conversation as resolved.
Show resolved
Hide resolved
|
||
return 0; | ||
return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); | ||
}; | ||
|
||
// We scan the instructions linearly and record each time that a new interval | ||
// starts, by placing it in a set. If we find this value in TransposEnds then | ||
// we remove it from the set. The max register usage is the maximum register | ||
// usage of the recipes of the set. | ||
for (unsigned int Idx = 0, Sz = Idx2Recipe.size(); Idx < Sz; ++Idx) { | ||
VPRecipeBase *R = Idx2Recipe[Idx]; | ||
|
||
// Remove all of the recipes that end at this location. | ||
RecipeList &List = TransposeEnds[Idx]; | ||
for (VPRecipeBase *ToRemove : List) | ||
OpenIntervals.erase(ToRemove); | ||
|
||
// Ignore recipes that are never used within the loop and do not have side | ||
// effects. | ||
if (!Ends.count(R) && !R->mayHaveSideEffects()) | ||
continue; | ||
Comment on lines
+4988
to
+4989
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think we are missing code here to also skip ephemeral values, which the legacy version handled properly. Still need to figure out the best way to fix this. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Handled this for now by just checking the exiting |
||
|
||
// Skip recipes for ignored values. | ||
// TODO: Should mark recipes for ephemeral values that cannot be removed | ||
// explictly in VPlan. | ||
if (isa<VPSingleDefRecipe>(R) && | ||
ValuesToIgnore.contains( | ||
cast<VPSingleDefRecipe>(R)->getUnderlyingValue())) | ||
continue; | ||
|
||
// For each VF find the maximum usage of registers. | ||
for (unsigned J = 0, E = VFs.size(); J < E; ++J) { | ||
// Count the number of registers used, per register class, given all open | ||
// intervals. | ||
// Note that elements in this SmallMapVector will be default constructed | ||
// as 0. So we can use "RegUsage[ClassID] += n" in the code below even if | ||
// there is no previous entry for ClassID. | ||
SmallMapVector<unsigned, unsigned, 4> RegUsage; | ||
|
||
for (auto *R : OpenIntervals) { | ||
// Skip recipes that weren't present in the original loop. | ||
// TODO: Remove after removing the legacy | ||
// LoopVectorizationCostModel::calculateRegisterUsage | ||
if (isa<VPVectorPointerRecipe, VPVectorEndPointerRecipe, | ||
VPBranchOnMaskRecipe>(R)) | ||
continue; | ||
|
||
if (VFs[J].isScalar() || | ||
isa<VPCanonicalIVPHIRecipe, VPReplicateRecipe, VPDerivedIVRecipe, | ||
VPScalarIVStepsRecipe>(R) || | ||
(isa<VPInstruction>(R) && | ||
all_of(cast<VPSingleDefRecipe>(R)->users(), [&](VPUser *U) { | ||
return cast<VPRecipeBase>(U)->usesScalars(R->getVPSingleValue()); | ||
}))) { | ||
unsigned ClassID = TTI.getRegisterClassForType( | ||
false, TypeInfo.inferScalarType(R->getVPSingleValue())); | ||
// FIXME: The target might use more than one register for the type | ||
// even in the scalar case. | ||
RegUsage[ClassID] += 1; | ||
} else { | ||
for (VPValue *DefV : R->definedValues()) { | ||
Type *ScalarTy = TypeInfo.inferScalarType(DefV); | ||
unsigned ClassID = TTI.getRegisterClassForType(true, ScalarTy); | ||
RegUsage[ClassID] += GetRegUsage(ScalarTy, VFs[J]); | ||
} | ||
} | ||
} | ||
|
||
for (const auto &Pair : RegUsage) { | ||
auto &Entry = MaxUsages[J][Pair.first]; | ||
Entry = std::max(Entry, Pair.second); | ||
} | ||
} | ||
|
||
LLVM_DEBUG(dbgs() << "LV(REG): At #" << Idx << " Interval # " | ||
<< OpenIntervals.size() << '\n'); | ||
|
||
// Add the current recipe to the list of open intervals. | ||
OpenIntervals.insert(R); | ||
} | ||
|
||
// We also search for instructions that are defined outside the loop, but are | ||
// used inside the loop. We need this number separately from the max-interval | ||
// usage number because when we unroll, loop-invariant values do not take | ||
// more register. | ||
LoopVectorizationCostModel::RegisterUsage RU; | ||
for (unsigned Idx = 0, End = VFs.size(); Idx < End; ++Idx) { | ||
// Note that elements in this SmallMapVector will be default constructed | ||
// as 0. So we can use "Invariant[ClassID] += n" in the code below even if | ||
// there is no previous entry for ClassID. | ||
SmallMapVector<unsigned, unsigned, 4> Invariant; | ||
|
||
for (auto *In : LoopInvariants) { | ||
// FIXME: The target might use more than one register for the type | ||
// even in the scalar case. | ||
bool IsScalar = all_of(In->users(), [&](VPUser *U) { | ||
return cast<VPRecipeBase>(U)->usesScalars(In); | ||
}); | ||
|
||
ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[Idx]; | ||
unsigned ClassID = TTI.getRegisterClassForType( | ||
VF.isVector(), TypeInfo.inferScalarType(In)); | ||
Invariant[ClassID] += GetRegUsage(TypeInfo.inferScalarType(In), VF); | ||
} | ||
|
||
LLVM_DEBUG({ | ||
dbgs() << "LV(REG): VF = " << VFs[Idx] << '\n'; | ||
dbgs() << "LV(REG): Found max usage: " << MaxUsages[Idx].size() | ||
<< " item\n"; | ||
for (const auto &pair : MaxUsages[Idx]) { | ||
dbgs() << "LV(REG): RegisterClass: " | ||
<< TTI.getRegisterClassName(pair.first) << ", " << pair.second | ||
<< " registers\n"; | ||
} | ||
dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() | ||
<< " item\n"; | ||
for (const auto &pair : Invariant) { | ||
dbgs() << "LV(REG): RegisterClass: " | ||
<< TTI.getRegisterClassName(pair.first) << ", " << pair.second | ||
<< " registers\n"; | ||
} | ||
}); | ||
|
||
RU.LoopInvariantRegs = Invariant; | ||
RU.MaxLocalUsers = MaxUsages[Idx]; | ||
RUs[Idx] = RU; | ||
} | ||
|
||
return RUs; | ||
} | ||
|
||
unsigned | ||
LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, | ||
LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF, | ||
InstructionCost LoopCost) { | ||
// -- The interleave heuristics -- | ||
// We interleave the loop in order to expose ILP and reduce the loop overhead. | ||
|
@@ -4922,7 +5148,8 @@ LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, | |
return 1; | ||
} | ||
|
||
RegisterUsage R = calculateRegisterUsage({VF})[0]; | ||
RegisterUsage R = | ||
::calculateRegisterUsage(Plan, {VF}, TTI, ValuesToIgnore)[0]; | ||
// We divide by these constants so assume that we have at least one | ||
// instruction that uses at least one register. | ||
for (auto &Pair : R.MaxLocalUsers) { | ||
|
@@ -5173,7 +5400,7 @@ LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { | |
// We also search for instructions that are defined outside the loop, but are | ||
// used inside the loop. We need this number separately from the max-interval | ||
// usage number because when we unroll, loop-invariant values do not take | ||
// more register. | ||
// more registers. | ||
LoopBlocksDFS DFS(TheLoop); | ||
DFS.perform(LI); | ||
|
||
|
@@ -10760,7 +10987,7 @@ bool LoopVectorizePass::processLoop(Loop *L) { | |
AddBranchWeights, CM.CostKind); | ||
if (LVP.hasPlanWithVF(VF.Width)) { | ||
// Select the interleave count. | ||
IC = CM.selectInterleaveCount(VF.Width, VF.Cost); | ||
IC = CM.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost); | ||
|
||
unsigned SelectedIC = std::max(IC, UserIC); | ||
// Optimistically generate runtime checks if they are needed. Drop them if | ||
|
Uh oh!
There was an error while loading. Please reload this page.