-
Notifications
You must be signed in to change notification settings - Fork 13.6k
[mlir][tensor] add gather decompose pattern #119805
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
zhczhong
wants to merge
1
commit into
llvm:main
Choose a base branch
from
zhczhong:zhicong/decompose_gather
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@llvm/pr-subscribers-mlir-tensor @llvm/pr-subscribers-mlir Author: zhicong zhong (zhczhong) ChangesCurrent tensor.gather cannot be bufferized and further lowered. Here add a decompose pattern to help decompose the tensor.gather into a series of bufferized op(tensor.empty, linalg.generic, tensor.extract_slice) Full diff: https://github.com/llvm/llvm-project/pull/119805.diff 6 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Tensor/TransformOps/TensorTransformOps.td b/mlir/include/mlir/Dialect/Tensor/TransformOps/TensorTransformOps.td
index 81bab1b0c82f7a..2be2d019e11228 100644
--- a/mlir/include/mlir/Dialect/Tensor/TransformOps/TensorTransformOps.td
+++ b/mlir/include/mlir/Dialect/Tensor/TransformOps/TensorTransformOps.td
@@ -189,4 +189,15 @@ def TypeConversionCastShapeDynamicDimsOp : Op<Transform_Dialect,
"(`ignore_dynamic_info` $ignore_dynamic_info^)? attr-dict";
}
+def ApplyDecomposeTensorGatherPatternsOp : Op<Transform_Dialect,
+ "apply_patterns.tensor.decompose_gather",
+ [DeclareOpInterfaceMethods<PatternDescriptorOpInterface>]> {
+ let description = [{
+ Indicates that tensor.gather ops should be decomposed into a chain of
+ tensor.extract_slice and linalg.generic to extract the element from source.
+ }];
+
+ let assemblyFormat = "attr-dict";
+}
+
#endif // TENSOR_TRANSFORM_OPS
diff --git a/mlir/include/mlir/Dialect/Tensor/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Tensor/Transforms/Transforms.h
index ae695e0326ca1a..fa73f74d0be66d 100644
--- a/mlir/include/mlir/Dialect/Tensor/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Tensor/Transforms/Transforms.h
@@ -102,6 +102,13 @@ using ControlFoldFn = std::function<bool(OpOperand *)>;
void populateRewriteAsConstantPatterns(RewritePatternSet &patterns,
const ControlFoldFn &controlFn);
+/// Populates `patterns` with patterns that decompose `tensor.gather` into
+/// `tensor.empty` and `linalg.geric`, followed by a chain
+/// of `tensor.extract_slice` operations on the inputs. This is intended to be
+/// used as a tensor -> linalg lowering that decomposes gather such
+/// that it can be bufferized into a sequence of bufferized op.
+void populateDecomposeTensorGatherPatterns(RewritePatternSet &patterns);
+
//===----------------------------------------------------------------------===//
// Transform helpers
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Tensor/TransformOps/TensorTransformOps.cpp b/mlir/lib/Dialect/Tensor/TransformOps/TensorTransformOps.cpp
index 99199252710f99..cb2d01df40b8d8 100644
--- a/mlir/lib/Dialect/Tensor/TransformOps/TensorTransformOps.cpp
+++ b/mlir/lib/Dialect/Tensor/TransformOps/TensorTransformOps.cpp
@@ -143,6 +143,11 @@ void transform::ApplyRewriteTensorOpsAsConstantPatternsOp::populatePatterns(
tensor::populateRewriteAsConstantPatterns(patterns, defaultControlFn);
}
+void transform::ApplyDecomposeTensorGatherPatternsOp::populatePatterns(
+ RewritePatternSet &patterns) {
+ tensor::populateDecomposeTensorGatherPatterns(patterns);
+}
+
//===----------------------------------------------------------------------===//
// TypeConversionCastTensorShapeOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Tensor/Transforms/CMakeLists.txt b/mlir/lib/Dialect/Tensor/Transforms/CMakeLists.txt
index cc6275fee671aa..f1a23e5e3bfbfc 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/CMakeLists.txt
+++ b/mlir/lib/Dialect/Tensor/Transforms/CMakeLists.txt
@@ -4,6 +4,7 @@ add_mlir_dialect_library(MLIRTensorTransforms
EmptyOpPatterns.cpp
ExtractSliceFromReshapeUtils.cpp
FoldTensorSubsetOps.cpp
+ GatherOpPatterns.cpp
IndependenceTransforms.cpp
MergeConsecutiveInsertExtractSlicePatterns.cpp
PackAndUnpackPatterns.cpp
diff --git a/mlir/lib/Dialect/Tensor/Transforms/GatherOpPatterns.cpp b/mlir/lib/Dialect/Tensor/Transforms/GatherOpPatterns.cpp
new file mode 100644
index 00000000000000..5905ee049228a5
--- /dev/null
+++ b/mlir/lib/Dialect/Tensor/Transforms/GatherOpPatterns.cpp
@@ -0,0 +1,166 @@
+//===- GatherOpPatterns.cpp - Patterns related to tensor.concat lowering --===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Affine/IR/AffineOps.h"
+#include "mlir/Dialect/Arith/IR/Arith.h"
+#include "mlir/Dialect/Arith/Utils/Utils.h"
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
+#include "mlir/IR/PatternMatch.h"
+
+using namespace mlir;
+using namespace mlir::tensor;
+
+namespace {
+
+/// Decompose `tensor.gather` into `linalg.generic`.
+///
+/// %2 = tensor.gather %0[%1] gather_dims([0]) : (tensor<7x128xf16>,
+/// tensor<1x7x1xindex>) -> tensor<1x7x128xf16>
+///
+/// Becomes
+///
+/// %empty = tensor.empty() : tensor<1x7x128xf16>
+/// %14 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1,
+/// 0)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types =
+/// ["parallel", "parallel", "parallel"]} ins(%expanded : tensor<1x7x1xindex>)
+/// outs(%13 : tensor<1x7x128xf16>) {
+/// ^bb0(%in: index, %out: f16):
+/// %17 = linalg.index 2 : index
+/// %extracted = tensor.extract %0[%in, %17] : tensor<7x128xf16>
+/// linalg.yield %extracted : f16
+/// } -> tensor<1x7x128xf16>
+struct DecomposeTensorGatherOp : public OpRewritePattern<tensor::GatherOp> {
+ using OpRewritePattern<tensor::GatherOp>::OpRewritePattern;
+
+ SmallVector<OpFoldResult> getDstMixedSizes(PatternRewriter &rewriter,
+ Location loc,
+ tensor::GatherOp gatherOp) const {
+ SmallVector<OpFoldResult> dstSize =
+ tensor::getMixedSizes(rewriter, loc, gatherOp.getResult());
+ SmallVector<OpFoldResult> indexSize =
+ tensor::getMixedSizes(rewriter, loc, gatherOp.getIndices());
+ SmallVector<OpFoldResult> srcSize =
+ tensor::getMixedSizes(rewriter, loc, gatherOp.getSource());
+ SmallVector<int64_t> gatherDims(gatherOp.getGatherDims());
+ bool isShrinkDst = (indexSize.size() - 1) + srcSize.size() ==
+ dstSize.size() + gatherDims.size();
+ for (size_t i = 0; i < indexSize.size() - 1; i++) {
+ dstSize[i] = indexSize[i];
+ }
+ auto cnt = 0;
+ for (size_t i = indexSize.size() - 1; i < dstSize.size(); i++) {
+ while (isShrinkDst && llvm::find(gatherDims, cnt) != gatherDims.end()) {
+ cnt++;
+ }
+ dstSize[i] = llvm::find(gatherDims, cnt) == gatherDims.end()
+ ? srcSize[cnt]
+ : getAsIndexOpFoldResult(rewriter.getContext(), 1);
+ cnt++;
+ }
+ return dstSize;
+ }
+
+ LogicalResult matchAndRewrite(tensor::GatherOp gatherOp,
+ PatternRewriter &rewriter) const override {
+ OpBuilder::InsertionGuard g(rewriter);
+ rewriter.setInsertionPoint(gatherOp);
+ Location loc = gatherOp.getLoc();
+ SmallVector<int64_t> gatherDims(gatherOp.getGatherDims());
+
+ // create destination tensor for linalg out
+ RankedTensorType dstType = gatherOp.getResultType();
+ Value dstTensor = rewriter.create<tensor::EmptyOp>(
+ loc, getDstMixedSizes(rewriter, loc, gatherOp),
+ dstType.getElementType());
+
+ // split index tensor to create the linalg input
+ SmallVector<Value> indexTensors;
+ Value originIndexTensor = gatherOp.getIndices();
+ SmallVector<OpFoldResult> indexTensorSize =
+ tensor::getMixedSizes(rewriter, loc, originIndexTensor);
+ SmallVector<OpFoldResult> indexTensorStride(
+ indexTensorSize.size(),
+ getAsIndexOpFoldResult(rewriter.getContext(), 1));
+ SmallVector<OpFoldResult> indexTensorOffset(
+ indexTensorSize.size(),
+ getAsIndexOpFoldResult(rewriter.getContext(), 0));
+ indexTensorSize[indexTensorSize.size() - 1] =
+ getAsIndexOpFoldResult(rewriter.getContext(), 1);
+
+ for (size_t cnt = 0; cnt < gatherDims.size(); cnt++) {
+ indexTensorOffset[indexTensorSize.size() - 1] =
+ getAsIndexOpFoldResult(rewriter.getContext(), cnt);
+ Value indexTensor = rewriter.create<tensor::ExtractSliceOp>(
+ loc, originIndexTensor, indexTensorOffset, indexTensorSize,
+ indexTensorStride);
+ indexTensors.emplace_back(indexTensor);
+ }
+
+ // create the affine map
+ SmallVector<AffineMap> affineMaps;
+ SmallVector<AffineExpr> dimExprs;
+ size_t dstRank = dstType.getShape().size();
+ for (unsigned i = 0; i < indexTensorSize.size() - 1; ++i)
+ dimExprs.push_back(rewriter.getAffineDimExpr(i));
+ dimExprs.push_back(getAffineConstantExpr(0, rewriter.getContext()));
+
+ for (size_t cnt = 0; cnt < gatherDims.size(); cnt++) {
+ AffineMap currentMap =
+ AffineMap::get(/*dimCount=*/dstRank, /*symbolCount=*/0, dimExprs,
+ rewriter.getContext());
+ affineMaps.emplace_back(currentMap);
+ }
+ affineMaps.emplace_back(rewriter.getMultiDimIdentityMap(dstRank));
+
+ // create iterater types array
+ SmallVector<utils::IteratorType> iteratorTypesArray(
+ dstRank, utils::IteratorType::parallel);
+
+ // check whether the gather op is valid
+ size_t srcRank = gatherOp.getSourceType().getShape().size();
+ assert(((indexTensorSize.size() - 1) + srcRank == dstRank ||
+ (indexTensorSize.size() - 1) + srcRank ==
+ dstRank + gatherDims.size()) &&
+ "Expected: index_size - 1 + source_size == dst_size or dst_szie - "
+ "gather_size. \n");
+ rewriter.replaceOpWithNewOp<linalg::GenericOp>(
+ gatherOp, TypeRange(dstType), indexTensors, ValueRange{dstTensor},
+ affineMaps, iteratorTypesArray,
+ [&](OpBuilder &b, Location loc, ValueRange args) {
+ SmallVector<Value> indexValues(srcRank);
+ bool isShrinkDst = (indexTensorSize.size() - 1) + srcRank ==
+ dstRank + gatherDims.size();
+ int cnt = 0;
+ for (auto i = indexTensorSize.size() - 1; i < dstRank; i++) {
+ while (isShrinkDst &&
+ llvm::find(gatherDims, cnt) != gatherDims.end()) {
+ cnt++;
+ }
+ indexValues[cnt] = b.create<linalg::IndexOp>(loc, i);
+ cnt++;
+ }
+ for (auto &&[i, dim] : llvm::enumerate(gatherDims)) {
+ indexValues[dim] = args[i];
+ }
+
+ Value extract = b.create<tensor::ExtractOp>(loc, gatherOp.getSource(),
+ indexValues);
+ b.create<linalg::YieldOp>(loc, extract);
+ });
+ return success();
+ }
+};
+
+} // namespace
+
+void mlir::tensor::populateDecomposeTensorGatherPatterns(
+ RewritePatternSet &patterns) {
+ patterns.add<DecomposeTensorGatherOp>(patterns.getContext());
+}
diff --git a/mlir/test/Dialect/Tensor/decompose-gather.mlir b/mlir/test/Dialect/Tensor/decompose-gather.mlir
new file mode 100644
index 00000000000000..587dfc8cc7e2fc
--- /dev/null
+++ b/mlir/test/Dialect/Tensor/decompose-gather.mlir
@@ -0,0 +1,66 @@
+// RUN: mlir-opt -split-input-file -transform-interpreter -cse --mlir-print-local-scope %s | FileCheck %s
+
+/// CHECK-LABEL: @gather_single_gather_dim
+func.func @gather_single_gather_dim(%arg0: tensor<2x2x2x2xf32>, %arg1: tensor<2x3x1xindex>) -> tensor<2x3x2x2x2xf32> {
+ /// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<2x3x2x2x2xf32>
+ /// CHECK: linalg.generic {{.*}} iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG1:.*]] : tensor<2x3x1xindex>) outs(%[[EMPTY:.*]] : tensor<2x3x2x2x2xf32>)
+ %1 = tensor.gather %arg0[%arg1] gather_dims([1]) : (tensor<2x2x2x2xf32>, tensor<2x3x1xindex>) -> tensor<2x3x2x2x2xf32>
+ return %1 : tensor<2x3x2x2x2xf32>
+}
+
+/// CHECK-LABEL: @gather_single_gather_dim_no_shrink
+func.func @gather_single_gather_dim_no_shrink(%arg0: tensor<2x2x2x2xf32>, %arg1: tensor<2x3x1xindex>) -> tensor<2x3x2x1x2x2xf32> {
+ /// CHECK: %[[EMPTY1:.*]] = tensor.empty() : tensor<2x3x2x1x2x2xf32>
+ /// CHECK: linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, 0)>, affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG1:.*]] : tensor<2x3x1xindex>) outs(%[[EMPTY1:.*]] : tensor<2x3x2x1x2x2xf32>)
+ %1 = tensor.gather %arg0[%arg1] gather_dims([1]) : (tensor<2x2x2x2xf32>, tensor<2x3x1xindex>) -> tensor<2x3x2x1x2x2xf32>
+ return %1 : tensor<2x3x2x1x2x2xf32>
+}
+
+/// CHECK-LABEL: @gather_multiple_gather_dim
+func.func @gather_multiple_gather_dim(%arg0: tensor<2x2x2x2xf32>, %arg1: tensor<2x3x2xindex>) -> tensor<2x3x2x2xf32> {
+ // CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<2x3x2x2xf32>
+ /// CHECK: %[[EXTRACTSLICE1:.*]] = tensor.extract_slice %[[ARG1:.*]][0, 0, 0] [2, 3, 1] [1, 1, 1] : tensor<2x3x2xindex> to tensor<2x3x1xindex>
+ /// CHECK: %[[EXTRACTSLICE2:.*]] = tensor.extract_slice %[[ARG1:.*]][0, 0, 1] [2, 3, 1] [1, 1, 1] : tensor<2x3x2xindex> to tensor<2x3x1xindex>
+ /// CHECK: linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, 0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, 0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[EXTRACTSLICE1:.*]], %[[EXTRACTSLICE2:.*]] : tensor<2x3x1xindex>, tensor<2x3x1xindex>) outs(%[[EMPTY:.*]] : tensor<2x3x2x2xf32>)
+ %1 = tensor.gather %arg0[%arg1] gather_dims([1, 2]) : (tensor<2x2x2x2xf32>, tensor<2x3x2xindex>) -> tensor<2x3x2x2xf32>
+ return %1 : tensor<2x3x2x2xf32>
+}
+
+/// CHECK-LABEL: @gather_multiple_gather_dim_no_shrink
+func.func @gather_multiple_gather_dim_no_shrink(%arg0: tensor<2x2x2x2xf32>, %arg1: tensor<2x3x2xindex>) -> tensor<2x3x2x1x1x2xf32> {
+ %1 = tensor.gather %arg0[%arg1] gather_dims([1, 2]) : (tensor<2x2x2x2xf32>, tensor<2x3x2xindex>) -> tensor<2x3x2x1x1x2xf32>
+ return %1 : tensor<2x3x2x1x1x2xf32>
+}
+
+/// CHECK-LABEL: @gather_single_gather_dim_dynamic
+func.func @gather_single_gather_dim_dynamic(%arg0: tensor<?x?x?x?xf32>, %arg1: tensor<2x3x1xindex>) -> tensor<2x3x?x?x?xf32> {
+ /// CHECK: %[[DIM1:.*]] = tensor.dim
+ /// CHECK: %[[DIM2:.*]] = tensor.dim
+ /// CHECK: %[[DIM3:.*]] = tensor.dim
+ /// CHECK: %[[EMPTY:.*]] = tensor.empty(%[[DIM1:.*]], %[[DIM2:.*]], %[[DIM3:.*]]) : tensor<2x3x?x?x?xf32>
+ /// CHECK: linalg.generic {{.*}} iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0:.*]] : tensor<2x3x1xindex>) outs(%[[EMPTY:.*]] : tensor<2x3x?x?x?xf32>)
+ %1 = tensor.gather %arg0[%arg1] gather_dims([1]) : (tensor<?x?x?x?xf32>, tensor<2x3x1xindex>) -> tensor<2x3x?x?x?xf32>
+ return %1 : tensor<2x3x?x?x?xf32>
+}
+
+/// CHECK-LABEL: @gather_multiple_gather_dim_no_shrink_dynamic
+func.func @gather_multiple_gather_dim_no_shrink_dynamic(%arg0: tensor<2x2x2x2xf32>, %arg1: tensor<?x?x2xindex>) -> tensor<?x?x2x1x1x2xf32> {
+ /// CHECK: %[[DIM1:.*]] = tensor.dim
+ /// CHECK: %[[DIM2:.*]] = tensor.dim
+ /// CHECK: %[[EMPTY:.*]] = tensor.empty(%[[DIM1:.*]], %[[DIM2:.*]]) : tensor<?x?x2x1x1x2xf32>
+ /// CHECK: %[[EXTRACTSLICE1:.*]] = tensor.extract_slice %[[ARG1:.*]][0, 0, 0] [%[[DIM1:.*]], %[[DIM2:.*]], 1] [1, 1, 1] : tensor<?x?x2xindex> to tensor<?x?x1xindex>
+ /// CHECK: %[[EXTRACTSLICE2:.*]] = tensor.extract_slice %[[ARG1:.*]][0, 0, 1] [%[[DIM1:.*]], %[[DIM2:.*]], 1] [1, 1, 1] : tensor<?x?x2xindex> to tensor<?x?x1xindex>
+ /// CHECK: linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, 0)>, affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, 0)>, affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel"]} ins(%[[EXTRACTSLICE1:.*]], %[[EXTRACTSLICE2:.*]] : tensor<?x?x1xindex>, tensor<?x?x1xindex>) outs(%[[EMPTY:.*]] : tensor<?x?x2x1x1x2xf32>)
+ %1 = tensor.gather %arg0[%arg1] gather_dims([1, 2]) : (tensor<2x2x2x2xf32>, tensor<?x?x2xindex>) -> tensor<?x?x2x1x1x2xf32>
+ return %1 : tensor<?x?x2x1x1x2xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%root: !transform.any_op {transform.readonly}) {
+ %func_op = transform.structured.match ops{["func.func"]} in %root : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.tensor.decompose_gather
+ } : !transform.op<"func.func">
+ transform.yield
+ }
+}
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Current tensor.gather cannot be bufferized and further lowered. Here add a decompose pattern to help decompose the tensor.gather into a series of bufferized op(tensor.empty, linalg.generic, tensor.extract_slice)