Skip to content

[Docs] Add TGATE in section optimization #7639

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 18 commits into from
Apr 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/source/en/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,8 @@
title: Token merging
- local: optimization/deepcache
title: DeepCache
- local: optimization/tgate
title: TGATE
title: General optimizations
- sections:
- local: using-diffusers/stable_diffusion_jax_how_to
Expand Down
179 changes: 179 additions & 0 deletions docs/source/en/optimization/tgate.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
# T-GATE

[T-GATE](https://github.com/HaozheLiu-ST/T-GATE/tree/main) accelerates inference for [Stable Diffusion](../api/pipelines/stable_diffusion/overview), [PixArt](../api/pipelines/pixart), and [Latency Consistency Model](../api/pipelines/latent_consistency_models.md) pipelines by skipping the cross-attention calculation once it converges. This method doesn't require any additional training and it can speed up inference from 10-50%. T-GATE is also compatible with other optimization methods like [DeepCache](./deepcache).

Before you begin, make sure you install T-GATE.

```bash
pip install tgate
pip install -U pytorch diffusers transformers accelerate DeepCache
```


To use T-GATE with a pipeline, you need to use its corresponding loader.

| Pipeline | T-GATE Loader |
|---|---|
| PixArt | TgatePixArtLoader |
| Stable Diffusion XL | TgateSDXLLoader |
| Stable Diffusion XL + DeepCache | TgateSDXLDeepCacheLoader |
| Stable Diffusion | TgateSDLoader |
| Stable Diffusion + DeepCache | TgateSDDeepCacheLoader |

Next, create a `TgateLoader` with a pipeline, the gate step (the time step to stop calculating the cross attention), and the number of inference steps. Then call the `tgate` method on the pipeline with a prompt, gate step, and the number of inference steps.

Let's see how to enable this for several different pipelines.

<hfoptions id="pipelines">
<hfoption id="PixArt">

Accelerate `PixArtAlphaPipeline` with T-GATE:

```py
import torch
from diffusers import PixArtAlphaPipeline
from tgate import TgatePixArtLoader

pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16)
pipe = TgatePixArtLoader(
pipe,
gate_step=8,
num_inference_steps=25,
).to("cuda")

image = pipe.tgate(
"An alpaca made of colorful building blocks, cyberpunk.",
gate_step=gate_step,
num_inference_steps=inference_step,
).images[0]
```
</hfoption>
<hfoption id="Stable Diffusion XL">

Accelerate `StableDiffusionXLPipeline` with T-GATE:

```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import DPMSolverMultistepScheduler

pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

from tgate import TgateSDXLLoader
gate_step = 10
inference_step = 25
pipe = TgateSDXLLoader(
pipe,
gate_step=gate_step,
num_inference_steps=inference_step,
).to("cuda")

image = pipe.tgate(
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
gate_step=gate_step,
num_inference_steps=inference_step
).images[0]
```
</hfoption>
<hfoption id="StableDiffusionXL with DeepCache">

Accelerate `StableDiffusionXLPipeline` with [DeepCache](https://github.com/horseee/DeepCache) and T-GATE:

```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import DPMSolverMultistepScheduler

pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

from tgate import TgateSDXLDeepCacheLoader
gate_step = 10
inference_step = 25
pipe = TgateSDXLDeepCacheLoader(
pipe,
cache_interval=3,
cache_branch_id=0,
).to("cuda")

image = pipe.tgate(
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
gate_step=gate_step,
num_inference_steps=inference_step
).images[0]
```
</hfoption>
<hfoption id="Latent Consistency Model">

Accelerate `latent-consistency/lcm-sdxl` with T-GATE:

```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import UNet2DConditionModel, LCMScheduler
from diffusers import DPMSolverMultistepScheduler

unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-sdxl",
torch_dtype=torch.float16,
variant="fp16",
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
unet=unet,
torch_dtype=torch.float16,
variant="fp16",
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

from tgate import TgateSDXLLoader
gate_step = 1
inference_step = 4
pipe = TgateSDXLLoader(
pipe,
gate_step=gate_step,
num_inference_steps=inference_step,
lcm=True
).to("cuda")

image = pipe.tgate(
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
gate_step=gate_step,
num_inference_steps=inference_step
).images[0]
```
</hfoption>
</hfoptions>

T-GATE also supports [`StableDiffusionPipeline`] and [PixArt-alpha/PixArt-LCM-XL-2-1024-MS](https://hf.co/PixArt-alpha/PixArt-LCM-XL-2-1024-MS).

## Benchmarks
| Model | MACs | Param | Latency | Zero-shot 10K-FID on MS-COCO |
|-----------------------|----------|-----------|---------|---------------------------|
| SD-1.5 | 16.938T | 859.520M | 7.032s | 23.927 |
| SD-1.5 w/ T-GATE | 9.875T | 815.557M | 4.313s | 20.789 |
| SD-2.1 | 38.041T | 865.785M | 16.121s | 22.609 |
| SD-2.1 w/ T-GATE | 22.208T | 815.433 M | 9.878s | 19.940 |
| SD-XL | 149.438T | 2.570B | 53.187s | 24.628 |
| SD-XL w/ T-GATE | 84.438T | 2.024B | 27.932s | 22.738 |
| Pixart-Alpha | 107.031T | 611.350M | 61.502s | 38.669 |
| Pixart-Alpha w/ T-GATE | 65.318T | 462.585M | 37.867s | 35.825 |
| DeepCache (SD-XL) | 57.888T | - | 19.931s | 23.755 |
| DeepCache w/ T-GATE | 43.868T | - | 14.666s | 23.999 |
| LCM (SD-XL) | 11.955T | 2.570B | 3.805s | 25.044 |
| LCM w/ T-GATE | 11.171T | 2.024B | 3.533s | 25.028 |
| LCM (Pixart-Alpha) | 8.563T | 611.350M | 4.733s | 36.086 |
| LCM w/ T-GATE | 7.623T | 462.585M | 4.543s | 37.048 |

The latency is tested on an NVIDIA 1080TI, MACs and Params are calculated with [calflops](https://github.com/MrYxJ/calculate-flops.pytorch), and the FID is calculated with [PytorchFID](https://github.com/mseitzer/pytorch-fid).