Skip to content

Fixes training resuming: Advanced Dreambooth LoRa Training #6566

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM! Thanks for the PR! 🔥

Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from peft import LoraConfig
from peft import LoraConfig, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
Expand All @@ -58,12 +58,13 @@
)
from diffusers.loaders import LoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import compute_snr
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr
from diffusers.utils import (
check_min_version,
convert_all_state_dict_to_peft,
convert_state_dict_to_diffusers,
convert_state_dict_to_kohya,
convert_unet_state_dict_to_peft,
is_wandb_available,
)
from diffusers.utils.import_utils import is_xformers_available
Expand Down Expand Up @@ -1292,17 +1293,6 @@ def main(args):
else:
param.requires_grad = False

# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
models = [unet]
if args.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
for model in models:
for param in model.parameters():
# only upcast trainable parameters (LoRA) into fp32
if param.requires_grad:
param.data = param.to(torch.float32)

# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
Expand Down Expand Up @@ -1358,17 +1348,34 @@ def load_model_hook(models, input_dir):
raise ValueError(f"unexpected save model: {model.__class__}")

lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)

text_encoder_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder." in k}
LoraLoaderMixin.load_lora_into_text_encoder(
text_encoder_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_
)
unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")}
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default")
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)

text_encoder_2_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder_2." in k}
LoraLoaderMixin.load_lora_into_text_encoder(
text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_two_
)
if args.train_text_encoder:
_set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_)

_set_state_dict_into_text_encoder(
lora_state_dict, prefix="text_encoder_2.", text_encoder=text_encoder_two_
)

# Make sure the trainable params are in float32. This is again needed since the base models
# are in `weight_dtype`. More details:
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
if args.mixed_precision == "fp16":
models = [unet_]
if args.train_text_encoder:
models.extend([text_encoder_one_, text_encoder_two_])
cast_training_params(models)

accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
Expand All @@ -1383,6 +1390,13 @@ def load_model_hook(models, input_dir):
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)

# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
models = [unet]
if args.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
cast_training_params(models, dtype=torch.float32)

unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))

if args.train_text_encoder:
Expand Down