Skip to content

Support Wan AccVideo lora #11704

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jun 13, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 45 additions & 14 deletions src/diffusers/loaders/lora_conversion_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1605,9 +1605,18 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
if diff_keys:
for diff_k in diff_keys:
param = original_state_dict[diff_k]
# The magnitudes of the .diff-ending weights are very low (most are below 1e-4, some are upto 1e-3,
# and 2 of them are about 1.6e-2 [the case with AccVideo lora]). The low magnitudes mostly correspond
# to norm layers. Ignoring them is the best option at the moment until a better solution is found. It
# is okay to ignore because they do not affect the model output in a significant manner.
threshold = 1.6e-2
absdiff = param.abs().max() - param.abs().min()
all_zero = torch.all(param == 0).item()
if all_zero:
logger.debug(f"Removed {diff_k} key from the state dict as it's all zeros.")
all_absdiff_lower_than_threshold = absdiff < threshold
if all_zero or all_absdiff_lower_than_threshold:
logger.debug(
f"Removed {diff_k} key from the state dict as it's all zeros, or values lower than hardcoded threshold."
)
original_state_dict.pop(diff_k)

# For the `diff_b` keys, we treat them as lora_bias.
Expand Down Expand Up @@ -1655,12 +1664,16 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):

# FFN
for o, c in zip(["ffn.0", "ffn.2"], ["net.0.proj", "net.2"]):
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.{o}.{lora_down_key}.weight"
)
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.{o}.{lora_up_key}.weight"
)
original_key = f"blocks.{i}.{o}.{lora_down_key}.weight"
converted_key = f"blocks.{i}.ffn.{c}.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.{o}.{lora_up_key}.weight"
converted_key = f"blocks.{i}.ffn.{c}.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

if f"blocks.{i}.{o}.diff_b" in original_state_dict:
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.bias"] = original_state_dict.pop(
f"blocks.{i}.{o}.diff_b"
Expand All @@ -1669,12 +1682,16 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
# Remaining.
if original_state_dict:
if any("time_projection" in k for k in original_state_dict):
converted_state_dict["condition_embedder.time_proj.lora_A.weight"] = original_state_dict.pop(
f"time_projection.1.{lora_down_key}.weight"
)
converted_state_dict["condition_embedder.time_proj.lora_B.weight"] = original_state_dict.pop(
f"time_projection.1.{lora_up_key}.weight"
)
original_key = f"time_projection.1.{lora_down_key}.weight"
converted_key = "condition_embedder.time_proj.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"time_projection.1.{lora_up_key}.weight"
converted_key = "condition_embedder.time_proj.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

if "time_projection.1.diff_b" in original_state_dict:
converted_state_dict["condition_embedder.time_proj.lora_B.bias"] = original_state_dict.pop(
"time_projection.1.diff_b"
Expand Down Expand Up @@ -1709,6 +1726,20 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
original_state_dict.pop(f"{text_time}.{b_n}.diff_b")
)

for img_ours, img_theirs in [
("ff.net.0.proj", "img_emb.proj.1"),
("ff.net.2", "img_emb.proj.3"),
]:
original_key = f"{img_theirs}.{lora_down_key}.weight"
converted_key = f"condition_embedder.image_embedder.{img_ours}.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"{img_theirs}.{lora_up_key}.weight"
converted_key = f"condition_embedder.image_embedder.{img_ours}.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

if len(original_state_dict) > 0:
diff = all(".diff" in k for k in original_state_dict)
if diff:
Expand Down