Skip to content

[test_models_transformer_hunyuan_video] help us test torch.compile() for impactful models #11431

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Apr 30, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,14 @@
import torch

from diffusers import HunyuanVideoTransformer3DModel
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
from diffusers.utils.testing_utils import (
enable_full_determinism,
is_torch_compile,
require_torch_2,
require_torch_gpu,
slow,
torch_device,
)

from ..test_modeling_common import ModelTesterMixin

Expand Down Expand Up @@ -89,6 +96,21 @@ def test_gradient_checkpointing_is_applied(self):
expected_set = {"HunyuanVideoTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

@require_torch_gpu
@require_torch_2
@is_torch_compile
@slow
def test_torch_compile_recompilation_and_graph_break(self):
torch._dynamo.reset()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

model = self.model_class(**init_dict).to(torch_device)
model = torch.compile(model, fullgraph=True)

with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
_ = model(**inputs_dict)
_ = model(**inputs_dict)


class HunyuanSkyreelsImageToVideoTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = HunyuanVideoTransformer3DModel
Expand Down Expand Up @@ -157,6 +179,21 @@ def test_gradient_checkpointing_is_applied(self):
expected_set = {"HunyuanVideoTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

@require_torch_gpu
@require_torch_2
@is_torch_compile
@slow
def test_torch_compile_recompilation_and_graph_break(self):
torch._dynamo.reset()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

model = self.model_class(**init_dict).to(torch_device)
model = torch.compile(model, fullgraph=True)

with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
_ = model(**inputs_dict)
_ = model(**inputs_dict)


class HunyuanVideoImageToVideoTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = HunyuanVideoTransformer3DModel
Expand Down Expand Up @@ -223,6 +260,21 @@ def test_gradient_checkpointing_is_applied(self):
expected_set = {"HunyuanVideoTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

@require_torch_gpu
@require_torch_2
@is_torch_compile
@slow
def test_torch_compile_recompilation_and_graph_break(self):
torch._dynamo.reset()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

model = self.model_class(**init_dict).to(torch_device)
model = torch.compile(model, fullgraph=True)

with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
_ = model(**inputs_dict)
_ = model(**inputs_dict)


class HunyuanVideoTokenReplaceImageToVideoTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = HunyuanVideoTransformer3DModel
Expand Down Expand Up @@ -290,3 +342,18 @@ def test_output(self):
def test_gradient_checkpointing_is_applied(self):
expected_set = {"HunyuanVideoTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

@require_torch_gpu
@require_torch_2
@is_torch_compile
@slow
def test_torch_compile_recompilation_and_graph_break(self):
torch._dynamo.reset()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

model = self.model_class(**init_dict).to(torch_device)
model = torch.compile(model, fullgraph=True)

with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
_ = model(**inputs_dict)
_ = model(**inputs_dict)
Loading