Skip to content

[LoRA] support wan i2v loras from the world. #11025

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Mar 11, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions docs/source/en/api/pipelines/wan.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,10 @@

# Wan

<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>

[Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.

<!-- TODO(aryan): update abstract once paper is out -->
Expand Down
50 changes: 50 additions & 0 deletions src/diffusers/loaders/lora_conversion_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1348,3 +1348,53 @@ def process_block(prefix, index, convert_norm):
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)

return converted_state_dict


def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
converted_state_dict = {}
original_state_dict = {k[len("diffusion_model.") :]: v for k, v in state_dict.items()}

num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in original_state_dict})

for i in range(num_blocks):
# Self-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.self_attn.{o}.lora_A.weight"
)
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.self_attn.{o}.lora_B.weight"
)

# Cross-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.lora_A.weight"
)
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.lora_B.weight"
)
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.lora_A.weight"
)
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.lora_B.weight"
)

# FFN
for o, c in zip(["ffn.0", "ffn.2"], ["net.0.proj", "net.2"]):
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.{o}.lora_A.weight"
)
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.{o}.lora_B.weight"
)

if len(original_state_dict) > 0:
raise ValueError(f"`state_dict` should be empty at this point but has {original_state_dict.keys()=}")

for key in list(converted_state_dict.keys()):
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)

return converted_state_dict
4 changes: 3 additions & 1 deletion src/diffusers/loaders/lora_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@
_convert_kohya_flux_lora_to_diffusers,
_convert_non_diffusers_lora_to_diffusers,
_convert_non_diffusers_lumina2_lora_to_diffusers,
_convert_non_diffusers_wan_lora_to_diffusers,
_convert_xlabs_flux_lora_to_diffusers,
_maybe_map_sgm_blocks_to_diffusers,
)
Expand Down Expand Up @@ -4111,7 +4112,6 @@ class WanLoraLoaderMixin(LoraBaseMixin):

@classmethod
@validate_hf_hub_args
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
Expand Down Expand Up @@ -4198,6 +4198,8 @@ def lora_state_dict(
user_agent=user_agent,
allow_pickle=allow_pickle,
)
if any(k.startswith("diffusion_model.") for k in state_dict):
state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)

is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
Expand Down
Loading