Skip to content

Fix Graph Breaks When Compiling CogView4 #10959

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Mar 7, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 18 additions & 14 deletions src/diffusers/models/transformers/transformer_cogview4.py
Original file line number Diff line number Diff line change
Expand Up @@ -244,30 +244,34 @@ class CogView4RotaryPosEmbed(nn.Module):
def __init__(self, dim: int, patch_size: int, rope_axes_dim: Tuple[int, int], theta: float = 10000.0) -> None:
super().__init__()

self.dim = dim
self.patch_size = patch_size
self.rope_axes_dim = rope_axes_dim

dim_h, dim_w = dim // 2, dim // 2
h_inv_freq = 1.0 / (theta ** (torch.arange(0, dim_h, 2, dtype=torch.float32)[: (dim_h // 2)].float() / dim_h))
w_inv_freq = 1.0 / (theta ** (torch.arange(0, dim_w, 2, dtype=torch.float32)[: (dim_w // 2)].float() / dim_w))
h_seq = torch.arange(self.rope_axes_dim[0])
w_seq = torch.arange(self.rope_axes_dim[1])
self.freqs_h = torch.outer(h_seq, h_inv_freq)
self.freqs_w = torch.outer(w_seq, w_inv_freq)
self.theta = theta

def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, num_channels, height, width = hidden_states.shape
height, width = height // self.patch_size, width // self.patch_size

h_idx = torch.arange(height)
w_idx = torch.arange(width)
dim_h, dim_w = self.dim // 2, self.dim // 2
h_inv_freq = 1.0 / (
self.theta ** (torch.arange(0, dim_h, 2, dtype=torch.float32)[: (dim_h // 2)].float() / dim_h)
)
w_inv_freq = 1.0 / (
self.theta ** (torch.arange(0, dim_w, 2, dtype=torch.float32)[: (dim_w // 2)].float() / dim_w)
)
h_seq = torch.arange(self.rope_axes_dim[0])
w_seq = torch.arange(self.rope_axes_dim[1])
freqs_h = torch.outer(h_seq, h_inv_freq)
freqs_w = torch.outer(w_seq, w_inv_freq)

h_idx = torch.arange(height, device=freqs_h.device)
w_idx = torch.arange(width, device=freqs_w.device)
inner_h_idx = h_idx * self.rope_axes_dim[0] // height
inner_w_idx = w_idx * self.rope_axes_dim[1] // width

self.freqs_h = self.freqs_h.to(hidden_states.device)
self.freqs_w = self.freqs_w.to(hidden_states.device)
freqs_h = self.freqs_h[inner_h_idx]
freqs_w = self.freqs_w[inner_w_idx]
freqs_h = freqs_h[inner_h_idx]
freqs_w = freqs_w[inner_w_idx]

# Create position matrices for height and width
# [height, 1, dim//4] and [1, width, dim//4]
Expand Down
Loading