Skip to content

model : jina-embeddings-v3 support #13693

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 7 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 115 additions & 37 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -3623,44 +3623,93 @@ def _xlmroberta_set_vocab(self) -> None:
from sentencepiece import sentencepiece_model_pb2 as model

tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'

tokenizer_json = {}
tokenizer_config_json = {}
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
tokenizer_path = self.dir_model / 'tokenizer.json'
tokenizer_config_path = self.dir_model / 'tokenizer_config.json'

sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")

add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
from base64 import b64decode
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)

tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
with open(tokenizer_path, "r", encoding="utf-8") as fp:
tokenizer_json = json.load(fp)

vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
if tokenizer_config_path.is_file():
with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
tokenizer_config_json = json.load(fp)

add_prefix = tokenizer.add_prefix_space
remove_whitespaces = tokenizer.clean_up_tokenization_spaces
precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])

vocab_size = self.hparams.get("vocab_size", tokenizer.vocab_size)
else:
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM

add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap

tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))

vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())

tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size

for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
if isinstance(tokenizer, SentencePieceProcessor):
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)

toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE

tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
else:
added_vocab = tokenizer.get_added_vocab()
unk_token = tokenizer_config_json.get("unk_token")
unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))

for token_id in range(vocab_size):
piece = tokenizer._convert_id_to_token(token_id)
text = piece.encode("utf-8")
score = tokenizer_json["model"]["vocab"][token_id][1]

toktype = SentencePieceTokenTypes.NORMAL
if token_id == unk_token_id:
toktype = SentencePieceTokenTypes.UNKNOWN
elif token_id in tokenizer.all_special_ids:
toktype = SentencePieceTokenTypes.CONTROL
elif token_id in added_vocab.values():
toktype = SentencePieceTokenTypes.USER_DEFINED
# No reliable way to detect this, but jina-embeddings-v3 doesn't have any
# elif tokenizer.IsByte(token_id):
# toktype = SentencePieceTokenTypes.BYTE

tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype

if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
Expand All @@ -3670,15 +3719,16 @@ def _xlmroberta_set_vocab(self) -> None:
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)

# realign tokens (see HF tokenizer code)
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
toktypes = [
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.UNKNOWN,
] + toktypes[3:-1]
if isinstance(tokenizer, SentencePieceProcessor):
# realign tokens (see HF tokenizer code)
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
toktypes = [
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.UNKNOWN,
] + toktypes[3:-1]

self.gguf_writer.add_tokenizer_model("t5")
self.gguf_writer.add_tokenizer_pre("default")
Expand Down Expand Up @@ -3829,8 +3879,15 @@ def _is_tokenizer_xlmroberta(self) -> bool:
class XLMRobertaModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
hparams = kwargs.pop("hparams", None)
if hparams is None:
hparams = ModelBase.load_hparams(dir_model)

if hparams.get("lora_adaptations"):
self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3

super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
self._xlmroberta_tokenizer_init()

def set_vocab(self):
Expand All @@ -3842,13 +3899,34 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
if name.startswith("roberta."):
name = name[8:]

# jina-embeddings-v3
if ".parametrizations." in name:
name = name.replace(".parametrizations.", ".")
if name.endswith(".original"):
name = name[:-9]

# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
if name == "embeddings.position_embeddings.weight":
if self._position_offset is not None:
data_torch = data_torch[self._position_offset:,:]

if name.endswith(".lora_A"):
# TODO: convert loras
return []

if name.endswith(".lora_B"):
# TODO: convert loras
return []

return super().modify_tensors(data_torch, name, bid)

def set_gguf_parameters(self):
super().set_gguf_parameters()

# jina-embeddings-v3
if rotary_emb_base := self.hparams.get("rotary_emb_base"):
self.gguf_writer.add_rope_freq_base(rotary_emb_base)


@ModelBase.register("GemmaForCausalLM")
class GemmaModel(TextModel):
Expand Down
14 changes: 14 additions & 0 deletions gguf-py/gguf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -272,6 +272,7 @@ class MODEL_ARCH(IntEnum):
NOMIC_BERT = auto()
NOMIC_BERT_MOE = auto()
JINA_BERT_V2 = auto()
JINA_BERT_V3 = auto()
BLOOM = auto()
STABLELM = auto()
QWEN = auto()
Expand Down Expand Up @@ -534,6 +535,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
MODEL_ARCH.NOMIC_BERT_MOE: "nomic-bert-moe",
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
MODEL_ARCH.JINA_BERT_V3: "jina-bert-v3",
MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen",
Expand Down Expand Up @@ -1020,6 +1022,18 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.LAYER_OUT_NORM,
MODEL_TENSOR.CLS,
],
MODEL_ARCH.JINA_BERT_V3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.TOKEN_TYPES,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.MPT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
Expand Down
2 changes: 2 additions & 0 deletions gguf-py/gguf/tensor_mapping.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,6 +157,7 @@ class TensorNameMap:
"h.{bid}.attn.c_attn", # gpt2
"transformer.h.{bid}.mixer.Wqkv", # phi2
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
"encoder.layers.{bid}.mixer.Wqkv", # jina-bert-v3
"model.layers.{bid}.self_attn.qkv_proj", # phi3
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
"transformer.layers.{bid}.attn.qkv_proj", # openelm
Expand Down Expand Up @@ -224,6 +225,7 @@ class TensorNameMap:
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
"model.layers.{bid}.attention.wo", # internlm2
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
"encoder.layers.{bid}.mixer.out_proj", # jina-bert-v3
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
"encoder.layers.{bid}.self_attention.dense", # chatglm
Expand Down
15 changes: 15 additions & 0 deletions src/llama-arch.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
{ LLM_ARCH_NOMIC_BERT_MOE, "nomic-bert-moe" },
{ LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
{ LLM_ARCH_JINA_BERT_V3, "jina-bert-v3" },
{ LLM_ARCH_BLOOM, "bloom" },
{ LLM_ARCH_STABLELM, "stablelm" },
{ LLM_ARCH_QWEN, "qwen" },
Expand Down Expand Up @@ -513,6 +514,20 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_CLS, "cls" },
},
},
{
LLM_ARCH_JINA_BERT_V3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
},
},
{
LLM_ARCH_BLOOM,
{
Expand Down
1 change: 1 addition & 0 deletions src/llama-arch.h
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ enum llm_arch {
LLM_ARCH_NOMIC_BERT,
LLM_ARCH_NOMIC_BERT_MOE,
LLM_ARCH_JINA_BERT_V2,
LLM_ARCH_JINA_BERT_V3,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
Expand Down
50 changes: 48 additions & 2 deletions src/llama-model.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_410M: return "410M";
case LLM_TYPE_450M: return "450M";
case LLM_TYPE_475M: return "475M";
case LLM_TYPE_558M: return "558M";
case LLM_TYPE_770M: return "770M";
case LLM_TYPE_780M: return "780M";
case LLM_TYPE_0_5B: return "0.5B";
Expand Down Expand Up @@ -710,6 +711,18 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_JINA_BERT_V3:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);

switch (hparams.n_layer) {
case 24:
type = LLM_TYPE_558M; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
Expand Down Expand Up @@ -2215,6 +2228,36 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);

layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_JINA_BERT_V3:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);

tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);

for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];

layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);

layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);

layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);

layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);

layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);

layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
}
Expand Down Expand Up @@ -5931,7 +5974,7 @@ struct llm_build_bert : public llm_graph_context {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);

if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
if (model.arch == LLM_ARCH_NOMIC_BERT_MOE || model.arch == LLM_ARCH_JINA_BERT_V3) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Expand Down Expand Up @@ -6003,7 +6046,7 @@ struct llm_build_bert : public llm_graph_context {
0.0f,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
cb(cur, "ffn_moe_out", il);
} else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
} else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || model.arch == LLM_ARCH_JINA_BERT_V3) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
Expand Down Expand Up @@ -13187,6 +13230,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
switch (arch) {
case LLM_ARCH_BERT:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_JINA_BERT_V3:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
Expand Down Expand Up @@ -13292,6 +13336,7 @@ llm_graph_result_ptr llama_model::build_graph(
} break;
case LLM_ARCH_BERT:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_JINA_BERT_V3:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
Expand Down Expand Up @@ -13658,6 +13703,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_GROK:
case LLM_ARCH_DBRX:
case LLM_ARCH_BERT:
case LLM_ARCH_JINA_BERT_V3:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
case LLM_ARCH_STABLELM:
Expand Down
Loading