Skip to content

Bug: Segmentation fault when running speculative decoding #9949

Open
@rationalism

Description

@rationalism

What happened?

Running speculative decoding with the new Llama-3.1-405B-Instruct, with Llama-3.1-8B-Instruct as a draft model (with the large model on CPU and the small one on GPU), results in a segfault and core dump. (I don't think it's simply an out-of-memory error; 405B runs OK by itself with llama-server, albeit slowly.)

Command used: ./build/bin/llama-speculative -m ~/.cache/huggingface/hub/models--ThomasBaruzier--Meta-Llama-3.1-405B-Instruct-GGUF/snapshots/8545acf6b66386cbe0c37a7a099d634531c62a1c/Meta-Llama-3.1-405B-Instruct-IQ3_XXS/Meta-Llama-3.1-405B-Instruct-IQ3_XXS-00001-of-00004.gguf -fa -ngl 0 -ctk q4_0 -ctv q4_0 -co -md ~/.cache/huggingface/hub/models--bartowski--Meta-Llama-3.1-8B-Instruct-GGUF/snapshots/9a8dec50f04fa8fad1dc1e7bc20a84a512e2bb01/Meta-Llama-3.1-8B-Instruct-Q6_K_L.gguf -ngld 33

Name and Version

(llama) alyssa@alyssa-desktop:~/lm_fun/llama.cpp$ ./build/bin/llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4070 Ti SUPER, compute capability 8.9, VMM: yes
version: 3943 (cda0e4b)
built with cc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 for x86_64-linux-gnu

What operating system are you seeing the problem on?

Linux

Relevant log output

(llama) alyssa@alyssa-desktop:~/lm_fun/llama.cpp$ ./build/bin/llama-speculative -m ~/.cache/huggingface/hub/models--ThomasBaruzier--Meta-Llama-3.1-405B-Instruct-GGUF/snapshots/8545acf6b66386cbe0c37a7a099d634531c62a1c/Meta-Llama-3.1-405B-Instruct-IQ3_XXS/Meta-Llama-3.1-405B-Instruct-IQ3_XXS-00001-of-00004.gguf -fa -ngl 0 -ctk q4_0 -ctv q4_0 -co -md ~/.cache/huggingface/hub/models--bartowski--Meta-Llama-3.1-8B-Instruct-GGUF/snapshots/9a8dec50f04fa8fad1dc1e7bc20a84a512e2bb01/Meta-Llama-3.1-8B-Instruct-Q6_K_L.gguf -ngld 33
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4070 Ti SUPER, compute capability 8.9, VMM: yes
build: 3943 (cda0e4b6) with cc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 for x86_64-linux-gnu
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 4070 Ti SUPER) - 15381 MiB free
llama_model_loader: additional 3 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 36 key-value pairs and 1138 tensors from /home/alyssa/.cache/huggingface/hub/models--ThomasBaruzier--Meta-Llama-3.1-405B-Instruct-GGUF/snapshots/8545acf6b66386cbe0c37a7a099d634531c62a1c/Meta-Llama-3.1-405B-Instruct-IQ3_XXS/Meta-Llama-3.1-405B-Instruct-IQ3_XXS-00001-of-00004.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = .
llama_model_loader: - kv   3:                           general.finetune str              = .
llama_model_loader: - kv   4:                           general.basename str              = Meta-Llama-3.1
llama_model_loader: - kv   5:                         general.size_label str              = 405B
llama_model_loader: - kv   6:                            general.license str              = llama3.1
llama_model_loader: - kv   7:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   8:                          general.languages arr[str,8]       = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv   9:                          llama.block_count u32              = 126
llama_model_loader: - kv  10:                       llama.context_length u32              = 131072
llama_model_loader: - kv  11:                     llama.embedding_length u32              = 16384
llama_model_loader: - kv  12:                  llama.feed_forward_length u32              = 53248
llama_model_loader: - kv  13:                 llama.attention.head_count u32              = 128
llama_model_loader: - kv  14:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  15:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  16:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                          general.file_type u32              = 23
llama_model_loader: - kv  18:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  19:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  23:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  24:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  25:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  26:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  27:                    tokenizer.chat_template str              = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv  28:               general.quantization_version u32              = 2
llama_model_loader: - kv  29:                      quantize.imatrix.file str              = gguf/Meta-Llama-3.1-405B-Instruct/ima...
llama_model_loader: - kv  30:                   quantize.imatrix.dataset str              = misc/calibration_datav3.txt
llama_model_loader: - kv  31:             quantize.imatrix.entries_count i32              = 882
llama_model_loader: - kv  32:              quantize.imatrix.chunks_count i32              = 125
llama_model_loader: - kv  33:                                   split.no u16              = 0
llama_model_loader: - kv  34:                                split.count u16              = 4
llama_model_loader: - kv  35:                        split.tensors.count i32              = 1138
llama_model_loader: - type  f32:  254 tensors
llama_model_loader: - type q4_K:  126 tensors
llama_model_loader: - type q5_K:    1 tensors
llama_model_loader: - type iq3_xxs:  378 tensors
llama_model_loader: - type iq3_s:  127 tensors
llama_model_loader: - type iq2_s:  252 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 128256
llm_load_print_meta: n_merges         = 280147
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 16384
llm_load_print_meta: n_layer          = 126
llm_load_print_meta: n_head           = 128
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 16
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 53248
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = ?B
llm_load_print_meta: model ftype      = IQ3_XXS - 3.0625 bpw
llm_load_print_meta: model params     = 405.85 B
llm_load_print_meta: model size       = 145.14 GiB (3.07 BPW) 
llm_load_print_meta: general.name     = .
llm_load_print_meta: BOS token        = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOT token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token        = 128008 '<|eom_id|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOG token        = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token        = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size =    0.53 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/127 layers to GPU
llm_load_tensors:        CPU buffer size = 45213.72 MiB
llm_load_tensors:        CPU buffer size = 45425.75 MiB
llm_load_tensors:        CPU buffer size = 45190.75 MiB
llm_load_tensors:        CPU buffer size = 12789.19 MiB
....................................................................................................
llama_new_context_with_model: n_ctx      = 131072
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base  = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:  CUDA_Host KV buffer size = 18144.00 MiB
llama_new_context_with_model: KV self size  = 18144.00 MiB, K (q4_0): 9072.00 MiB, V (q4_0): 9072.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.49 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =  1660.25 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =   288.01 MiB
llama_new_context_with_model: graph nodes  = 3535
llama_new_context_with_model: graph splits = 1642
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 4070 Ti SUPER) - 13671 MiB free
llama_model_loader: loaded meta data with 33 key-value pairs and 292 tensors from /home/alyssa/.cache/huggingface/hub/models--bartowski--Meta-Llama-3.1-8B-Instruct-GGUF/snapshots/9a8dec50f04fa8fad1dc1e7bc20a84a512e2bb01/Meta-Llama-3.1-8B-Instruct-Q6_K_L.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Meta Llama 3.1 8B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Meta-Llama-3.1
llama_model_loader: - kv   5:                         general.size_label str              = 8B
llama_model_loader: - kv   6:                            general.license str              = llama3.1
llama_model_loader: - kv   7:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   8:                          general.languages arr[str,8]       = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv   9:                          llama.block_count u32              = 32
llama_model_loader: - kv  10:                       llama.context_length u32              = 131072
llama_model_loader: - kv  11:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv  12:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv  13:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  14:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  15:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  16:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                          general.file_type u32              = 18
llama_model_loader: - kv  18:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  19:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  23:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  24:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  25:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  26:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  27:                    tokenizer.chat_template str              = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv  28:               general.quantization_version u32              = 2
llama_model_loader: - kv  29:                      quantize.imatrix.file str              = /models_out/Meta-Llama-3.1-8B-Instruc...
llama_model_loader: - kv  30:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  31:             quantize.imatrix.entries_count i32              = 224
llama_model_loader: - kv  32:              quantize.imatrix.chunks_count i32              = 125
llama_model_loader: - type  f32:   66 tensors
llama_model_loader: - type q8_0:    2 tensors
llama_model_loader: - type q6_K:  224 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 128256
llm_load_print_meta: n_merges         = 280147
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 8B
llm_load_print_meta: model ftype      = Q6_K
llm_load_print_meta: model params     = 8.03 B
llm_load_print_meta: model size       = 6.37 GiB (6.82 BPW) 
llm_load_print_meta: general.name     = Meta Llama 3.1 8B Instruct
llm_load_print_meta: BOS token        = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOT token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token        = 128008 '<|eom_id|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOG token        = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token        = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size =    0.27 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:        CPU buffer size =   532.31 MiB
llm_load_tensors:      CUDA0 buffer size =  5993.34 MiB
......................................................................................
llama_new_context_with_model: n_ctx      = 131072
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base  = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =  4608.00 MiB
llama_new_context_with_model: KV self size  = 4608.00 MiB, K (q4_0): 2304.00 MiB, V (q4_0): 2304.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.49 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   416.00 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =   264.01 MiB
llama_new_context_with_model: graph nodes  = 903
llama_new_context_with_model: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)


<|begin_of_text|>

Segmentation fault (core dumped)

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingcritical severityUsed to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions