Description
What happened?
Running speculative decoding with the new Llama-3.1-405B-Instruct, with Llama-3.1-8B-Instruct as a draft model (with the large model on CPU and the small one on GPU), results in a segfault and core dump. (I don't think it's simply an out-of-memory error; 405B runs OK by itself with llama-server
, albeit slowly.)
Command used: ./build/bin/llama-speculative -m ~/.cache/huggingface/hub/models--ThomasBaruzier--Meta-Llama-3.1-405B-Instruct-GGUF/snapshots/8545acf6b66386cbe0c37a7a099d634531c62a1c/Meta-Llama-3.1-405B-Instruct-IQ3_XXS/Meta-Llama-3.1-405B-Instruct-IQ3_XXS-00001-of-00004.gguf -fa -ngl 0 -ctk q4_0 -ctv q4_0 -co -md ~/.cache/huggingface/hub/models--bartowski--Meta-Llama-3.1-8B-Instruct-GGUF/snapshots/9a8dec50f04fa8fad1dc1e7bc20a84a512e2bb01/Meta-Llama-3.1-8B-Instruct-Q6_K_L.gguf -ngld 33
Name and Version
(llama) alyssa@alyssa-desktop:~/lm_fun/llama.cpp$ ./build/bin/llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4070 Ti SUPER, compute capability 8.9, VMM: yes
version: 3943 (cda0e4b)
built with cc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 for x86_64-linux-gnu
What operating system are you seeing the problem on?
Linux
Relevant log output
(llama) alyssa@alyssa-desktop:~/lm_fun/llama.cpp$ ./build/bin/llama-speculative -m ~/.cache/huggingface/hub/models--ThomasBaruzier--Meta-Llama-3.1-405B-Instruct-GGUF/snapshots/8545acf6b66386cbe0c37a7a099d634531c62a1c/Meta-Llama-3.1-405B-Instruct-IQ3_XXS/Meta-Llama-3.1-405B-Instruct-IQ3_XXS-00001-of-00004.gguf -fa -ngl 0 -ctk q4_0 -ctv q4_0 -co -md ~/.cache/huggingface/hub/models--bartowski--Meta-Llama-3.1-8B-Instruct-GGUF/snapshots/9a8dec50f04fa8fad1dc1e7bc20a84a512e2bb01/Meta-Llama-3.1-8B-Instruct-Q6_K_L.gguf -ngld 33
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4070 Ti SUPER, compute capability 8.9, VMM: yes
build: 3943 (cda0e4b6) with cc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 for x86_64-linux-gnu
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 4070 Ti SUPER) - 15381 MiB free
llama_model_loader: additional 3 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 36 key-value pairs and 1138 tensors from /home/alyssa/.cache/huggingface/hub/models--ThomasBaruzier--Meta-Llama-3.1-405B-Instruct-GGUF/snapshots/8545acf6b66386cbe0c37a7a099d634531c62a1c/Meta-Llama-3.1-405B-Instruct-IQ3_XXS/Meta-Llama-3.1-405B-Instruct-IQ3_XXS-00001-of-00004.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = .
llama_model_loader: - kv 3: general.finetune str = .
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3.1
llama_model_loader: - kv 5: general.size_label str = 405B
llama_model_loader: - kv 6: general.license str = llama3.1
llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv 9: llama.block_count u32 = 126
llama_model_loader: - kv 10: llama.context_length u32 = 131072
llama_model_loader: - kv 11: llama.embedding_length u32 = 16384
llama_model_loader: - kv 12: llama.feed_forward_length u32 = 53248
llama_model_loader: - kv 13: llama.attention.head_count u32 = 128
llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 17: general.file_type u32 = 23
llama_model_loader: - kv 18: llama.vocab_size u32 = 128256
llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 27: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv 28: general.quantization_version u32 = 2
llama_model_loader: - kv 29: quantize.imatrix.file str = gguf/Meta-Llama-3.1-405B-Instruct/ima...
llama_model_loader: - kv 30: quantize.imatrix.dataset str = misc/calibration_datav3.txt
llama_model_loader: - kv 31: quantize.imatrix.entries_count i32 = 882
llama_model_loader: - kv 32: quantize.imatrix.chunks_count i32 = 125
llama_model_loader: - kv 33: split.no u16 = 0
llama_model_loader: - kv 34: split.count u16 = 4
llama_model_loader: - kv 35: split.tensors.count i32 = 1138
llama_model_loader: - type f32: 254 tensors
llama_model_loader: - type q4_K: 126 tensors
llama_model_loader: - type q5_K: 1 tensors
llama_model_loader: - type iq3_xxs: 378 tensors
llama_model_loader: - type iq3_s: 127 tensors
llama_model_loader: - type iq2_s: 252 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 131072
llm_load_print_meta: n_embd = 16384
llm_load_print_meta: n_layer = 126
llm_load_print_meta: n_head = 128
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 16
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 53248
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 131072
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = IQ3_XXS - 3.0625 bpw
llm_load_print_meta: model params = 405.85 B
llm_load_print_meta: model size = 145.14 GiB (3.07 BPW)
llm_load_print_meta: general.name = .
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token = 128008 '<|eom_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOG token = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size = 0.53 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/127 layers to GPU
llm_load_tensors: CPU buffer size = 45213.72 MiB
llm_load_tensors: CPU buffer size = 45425.75 MiB
llm_load_tensors: CPU buffer size = 45190.75 MiB
llm_load_tensors: CPU buffer size = 12789.19 MiB
....................................................................................................
llama_new_context_with_model: n_ctx = 131072
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA_Host KV buffer size = 18144.00 MiB
llama_new_context_with_model: KV self size = 18144.00 MiB, K (q4_0): 9072.00 MiB, V (q4_0): 9072.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.49 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 1660.25 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 288.01 MiB
llama_new_context_with_model: graph nodes = 3535
llama_new_context_with_model: graph splits = 1642
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 4070 Ti SUPER) - 13671 MiB free
llama_model_loader: loaded meta data with 33 key-value pairs and 292 tensors from /home/alyssa/.cache/huggingface/hub/models--bartowski--Meta-Llama-3.1-8B-Instruct-GGUF/snapshots/9a8dec50f04fa8fad1dc1e7bc20a84a512e2bb01/Meta-Llama-3.1-8B-Instruct-Q6_K_L.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Meta Llama 3.1 8B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3.1
llama_model_loader: - kv 5: general.size_label str = 8B
llama_model_loader: - kv 6: general.license str = llama3.1
llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv 9: llama.block_count u32 = 32
llama_model_loader: - kv 10: llama.context_length u32 = 131072
llama_model_loader: - kv 11: llama.embedding_length u32 = 4096
llama_model_loader: - kv 12: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 13: llama.attention.head_count u32 = 32
llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 17: general.file_type u32 = 18
llama_model_loader: - kv 18: llama.vocab_size u32 = 128256
llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 27: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv 28: general.quantization_version u32 = 2
llama_model_loader: - kv 29: quantize.imatrix.file str = /models_out/Meta-Llama-3.1-8B-Instruc...
llama_model_loader: - kv 30: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt
llama_model_loader: - kv 31: quantize.imatrix.entries_count i32 = 224
llama_model_loader: - kv 32: quantize.imatrix.chunks_count i32 = 125
llama_model_loader: - type f32: 66 tensors
llama_model_loader: - type q8_0: 2 tensors
llama_model_loader: - type q6_K: 224 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 131072
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 131072
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 8B
llm_load_print_meta: model ftype = Q6_K
llm_load_print_meta: model params = 8.03 B
llm_load_print_meta: model size = 6.37 GiB (6.82 BPW)
llm_load_print_meta: general.name = Meta Llama 3.1 8B Instruct
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token = 128008 '<|eom_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOG token = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size = 0.27 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors: CPU buffer size = 532.31 MiB
llm_load_tensors: CUDA0 buffer size = 5993.34 MiB
......................................................................................
llama_new_context_with_model: n_ctx = 131072
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 4608.00 MiB
llama_new_context_with_model: KV self size = 4608.00 MiB, K (q4_0): 2304.00 MiB, V (q4_0): 2304.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.49 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 416.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 264.01 MiB
llama_new_context_with_model: graph nodes = 903
llama_new_context_with_model: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
<|begin_of_text|>
Segmentation fault (core dumped)