Description
What happened?
export LLAMA_CUDA=1 # only if for NViDiA CUDA
export CUDA_DOCKER_ARCH=compute_86
make -j$(nproc) NVCC=/usr/local/cuda/bin/nvcc
./llama-llava-cli -m ./m2/moondream2-text-model-f16.gguf --mmproj ./m2/moondream2-mmproj-f16.gguf --image ./assets/demo-2.jpg -p "describe the image" --temp 0.1 -c 2048
core dump
before this commit no crash
Since minicpm2.6 has a completely separate cli, i did not expect it to affect llama-llava-cli which moondream uses
Crash only observed on linux cuda and not on Mac
Name and Version
Yes crash with version 3598
No crash with
./llama-cli --version
version: 3597 (ee2984b)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
What operating system are you seeing the problem on?
Linux
Relevant log output
anand@nitro17:~/moondream-stuff/llama.cpp$ ./llama-llava-cli -m ./m2/moondream2-text-model-f16.gguf --mmproj ./m2/moondream2-mmproj-f16.gguf --image ./assets/demo-2.jpg -p "describe the image" --temp 0.1 -c 2048
Log start
llama_model_loader: loaded meta data with 19 key-value pairs and 245 tensors from ./m2/moondream2-text-model-f16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = phi2
llama_model_loader: - kv 1: general.name str = moondream2
llama_model_loader: - kv 2: phi2.context_length u32 = 2048
llama_model_loader: - kv 3: phi2.embedding_length u32 = 2048
llama_model_loader: - kv 4: phi2.feed_forward_length u32 = 8192
llama_model_loader: - kv 5: phi2.block_count u32 = 24
llama_model_loader: - kv 6: phi2.attention.head_count u32 = 32
llama_model_loader: - kv 7: phi2.attention.head_count_kv u32 = 32
llama_model_loader: - kv 8: phi2.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 9: phi2.rope.dimension_count u32 = 32
llama_model_loader: - kv 10: general.file_type u32 = 1
llama_model_loader: - kv 11: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 12: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,51200] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,51200] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,50000] = ["Ġ t", "Ġ a", "h e", "i n", "r e",...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 50256
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 50256
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 50256
llama_model_loader: - type f32: 147 tensors
llama_model_loader: - type f16: 98 tensors
llm_load_vocab: missing pre-tokenizer type, using: 'default'
llm_load_vocab:
llm_load_vocab: ************************************
llm_load_vocab: GENERATION QUALITY WILL BE DEGRADED!
llm_load_vocab: CONSIDER REGENERATING THE MODEL
llm_load_vocab: ************************************
llm_load_vocab:
llm_load_vocab: special tokens cache size = 944
llm_load_vocab: token to piece cache size = 0.3151 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = phi2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 51200
llm_load_print_meta: n_merges = 50000
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 2048
llm_load_print_meta: n_layer = 24
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_rot = 32
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 64
llm_load_print_meta: n_embd_head_v = 64
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 2048
llm_load_print_meta: n_embd_v_gqa = 2048
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 8192
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 2048
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 1B
llm_load_print_meta: model ftype = F16
llm_load_print_meta: model params = 1.42 B
llm_load_print_meta: model size = 2.64 GiB (16.01 BPW)
llm_load_print_meta: general.name = moondream2
llm_load_print_meta: BOS token = 50256 '<|endoftext|>'
llm_load_print_meta: EOS token = 50256 '<|endoftext|>'
llm_load_print_meta: UNK token = 50256 '<|endoftext|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 50256 '<|endoftext|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4060 Laptop GPU, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size = 0.11 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/25 layers to GPU
llm_load_tensors: CPU buffer size = 2706.27 MiB
................................................................................
clip_model_load: model name: vikhyatk/moondream2
clip_model_load: description: image encoder for vikhyatk/moondream2
clip_model_load: GGUF version: 3
clip_model_load: alignment: 32
clip_model_load: n_tensors: 457
clip_model_load: n_kv: 19
clip_model_load: ftype: f16
clip_model_load: loaded meta data with 19 key-value pairs and 457 tensors from ./m2/moondream2-mmproj-f16.gguf
clip_model_load: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
clip_model_load: - kv 0: general.architecture str = clip
clip_model_load: - kv 1: clip.has_text_encoder bool = false
clip_model_load: - kv 2: clip.has_vision_encoder bool = true
clip_model_load: - kv 3: clip.has_llava_projector bool = true
clip_model_load: - kv 4: general.file_type u32 = 1
clip_model_load: - kv 5: general.name str = vikhyatk/moondream2
clip_model_load: - kv 6: general.description str = image encoder for vikhyatk/moondream2
clip_model_load: - kv 7: clip.projector_type str = mlp
clip_model_load: - kv 8: clip.vision.image_size u32 = 378
clip_model_load: - kv 9: clip.vision.patch_size u32 = 14
clip_model_load: - kv 10: clip.vision.embedding_length u32 = 1152
clip_model_load: - kv 11: clip.vision.feed_forward_length u32 = 4304
clip_model_load: - kv 12: clip.vision.projection_dim u32 = 2048
clip_model_load: - kv 13: clip.vision.attention.head_count u32 = 16
clip_model_load: - kv 14: clip.vision.attention.layer_norm_epsilon f32 = 0.000001
clip_model_load: - kv 15: clip.vision.block_count u32 = 28
clip_model_load: - kv 16: clip.vision.image_mean arr[f32,3] = [0.500000, 0.500000, 0.500000]
clip_model_load: - kv 17: clip.vision.image_std arr[f32,3] = [0.500000, 0.500000, 0.500000]
clip_model_load: - kv 18: clip.use_gelu bool = true
clip_model_load: - type f32: 285 tensors
clip_model_load: - type f16: 172 tensors
clip_model_load: CLIP using CUDA backend
clip_model_load: text_encoder: 0
clip_model_load: vision_encoder: 1
clip_model_load: llava_projector: 1
clip_model_load: minicpmv_projector: 0
clip_model_load: model size: 867.61 MB
clip_model_load: metadata size: 0.16 MB
clip_model_load: params backend buffer size = 867.61 MB (457 tensors)
key clip.vision.image_grid_pinpoints not found in file
key clip.vision.mm_patch_merge_type not found in file
key clip.vision.image_crop_resolution not found in file
clip_model_load: compute allocated memory: 50.10 MB
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA_Host KV buffer size = 384.00 MiB
llama_new_context_with_model: KV self size = 384.00 MiB, K (f16): 192.00 MiB, V (f16): 192.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.20 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 304.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 12.01 MiB
llama_new_context_with_model: graph nodes = 921
llama_new_context_with_model: graph splits = 294
encode_image_with_clip: image embedding created: 729 tokens
encode_image_with_clip: image encoded in 167.45 ms by CLIP ( 0.23 ms per image patch)
The image shows a computer server rack with multiple computer boards and components on it. The rack is placed on a carpeted floor, and there is a chair nearby. The computer boards are connected to the rack using wires, and the rack is positioned in a room with a brick wall in the background.
llama_print_timings: load time = 1776.52 ms
llama_print_timings: sample time = 1.56 ms / 61 runs ( 0.03 ms per token, 39203.08 tokens per second)
llama_print_timings: prompt eval time = 963.07 ms / 770 tokens ( 1.25 ms per token, 799.52 tokens per second)
llama_print_timings: eval time = 3473.04 ms / 60 runs ( 57.88 ms per token, 17.28 tokens per second)
llama_print_timings: total time = 5310.63 ms / 830 tokens
anand@nitro17:~/moondream-stuff/llama.cpp$
anand@nitro17:~/moondream-stuff/llama.cpp$ ./llama-llava-cli -m ./m2/moondream2-text-model-f16.gguf --mmproj ./m2/moondream2-mmproj-f16.gguf --image ./assets/demo-2.jpg -p "describe the image" --temp 0.1 -c 2048
Log start
llama_model_loader: loaded meta data with 19 key-value pairs and 245 tensors from ./m2/moondream2-text-model-f16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = phi2
llama_model_loader: - kv 1: general.name str = moondream2
llama_model_loader: - kv 2: phi2.context_length u32 = 2048
llama_model_loader: - kv 3: phi2.embedding_length u32 = 2048
llama_model_loader: - kv 4: phi2.feed_forward_length u32 = 8192
llama_model_loader: - kv 5: phi2.block_count u32 = 24
llama_model_loader: - kv 6: phi2.attention.head_count u32 = 32
llama_model_loader: - kv 7: phi2.attention.head_count_kv u32 = 32
llama_model_loader: - kv 8: phi2.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 9: phi2.rope.dimension_count u32 = 32
llama_model_loader: - kv 10: general.file_type u32 = 1
llama_model_loader: - kv 11: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 12: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,51200] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,51200] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,50000] = ["Ġ t", "Ġ a", "h e", "i n", "r e",...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 50256
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 50256
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 50256
llama_model_loader: - type f32: 147 tensors
llama_model_loader: - type f16: 98 tensors
llm_load_vocab: missing pre-tokenizer type, using: 'default'
llm_load_vocab:
llm_load_vocab: ************************************
llm_load_vocab: GENERATION QUALITY WILL BE DEGRADED!
llm_load_vocab: CONSIDER REGENERATING THE MODEL
llm_load_vocab: ************************************
llm_load_vocab:
llm_load_vocab: special tokens cache size = 944
llm_load_vocab: token to piece cache size = 0.3151 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = phi2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 51200
llm_load_print_meta: n_merges = 50000
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 2048
llm_load_print_meta: n_layer = 24
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_rot = 32
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 64
llm_load_print_meta: n_embd_head_v = 64
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 2048
llm_load_print_meta: n_embd_v_gqa = 2048
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 8192
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 2048
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 1B
llm_load_print_meta: model ftype = F16
llm_load_print_meta: model params = 1.42 B
llm_load_print_meta: model size = 2.64 GiB (16.01 BPW)
llm_load_print_meta: general.name = moondream2
llm_load_print_meta: BOS token = 50256 '<|endoftext|>'
llm_load_print_meta: EOS token = 50256 '<|endoftext|>'
llm_load_print_meta: UNK token = 50256 '<|endoftext|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 50256 '<|endoftext|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4060 Laptop GPU, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size = 0.11 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/25 layers to GPU
llm_load_tensors: CPU buffer size = 2706.27 MiB
................................................................................
clip_model_load: model name: vikhyatk/moondream2
clip_model_load: description: image encoder for vikhyatk/moondream2
clip_model_load: GGUF version: 3
clip_model_load: alignment: 32
clip_model_load: n_tensors: 457
clip_model_load: n_kv: 19
clip_model_load: ftype: f16
clip_model_load: loaded meta data with 19 key-value pairs and 457 tensors from ./m2/moondream2-mmproj-f16.gguf
clip_model_load: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
clip_model_load: - kv 0: general.architecture str = clip
clip_model_load: - kv 1: clip.has_text_encoder bool = false
clip_model_load: - kv 2: clip.has_vision_encoder bool = true
clip_model_load: - kv 3: clip.has_llava_projector bool = true
clip_model_load: - kv 4: general.file_type u32 = 1
clip_model_load: - kv 5: general.name str = vikhyatk/moondream2
clip_model_load: - kv 6: general.description str = image encoder for vikhyatk/moondream2
clip_model_load: - kv 7: clip.projector_type str = mlp
clip_model_load: - kv 8: clip.vision.image_size u32 = 378
clip_model_load: - kv 9: clip.vision.patch_size u32 = 14
clip_model_load: - kv 10: clip.vision.embedding_length u32 = 1152
clip_model_load: - kv 11: clip.vision.feed_forward_length u32 = 4304
clip_model_load: - kv 12: clip.vision.projection_dim u32 = 2048
clip_model_load: - kv 13: clip.vision.attention.head_count u32 = 16
clip_model_load: - kv 14: clip.vision.attention.layer_norm_epsilon f32 = 0.000001
clip_model_load: - kv 15: clip.vision.block_count u32 = 28
clip_model_load: - kv 16: clip.vision.image_mean arr[f32,3] = [0.500000, 0.500000, 0.500000]
clip_model_load: - kv 17: clip.vision.image_std arr[f32,3] = [0.500000, 0.500000, 0.500000]
clip_model_load: - kv 18: clip.use_gelu bool = true
clip_model_load: - type f32: 285 tensors
clip_model_load: - type f16: 172 tensors
clip_model_load: CLIP using CUDA backend
clip_model_load: text_encoder: 0
clip_model_load: vision_encoder: 1
clip_model_load: llava_projector: 1
clip_model_load: minicpmv_projector: 0
clip_model_load: model size: 867.61 MB
clip_model_load: metadata size: 0.16 MB
clip_model_load: params backend buffer size = 867.61 MB (457 tensors)
key clip.vision.image_grid_pinpoints not found in file
key clip.vision.mm_patch_merge_type not found in file
key clip.vision.image_crop_resolution not found in file
clip_model_load: compute allocated memory: 50.10 MB
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA_Host KV buffer size = 384.00 MiB
llama_new_context_with_model: KV self size = 384.00 MiB, K (f16): 192.00 MiB, V (f16): 192.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.20 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 304.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 12.01 MiB
llama_new_context_with_model: graph nodes = 921
llama_new_context_with_model: graph splits = 294
Segmentation fault (core dumped)