Skip to content

llama cpp server not doing parallel inference for llava when using flags -np and -cb #5592

Closed
@tellsiddh

Description

@tellsiddh

When I am trying to do parallel inferencing on llama cpp server for multimodal, I am getting the correct output for slot 0, but for other slots, I am not. Does that mean that clip is only being loaded on one slot? I can see some clip layers failing to load.

Here is my llama cpp server code that I use.

./server -m ../models/llava13b1_5/llava13b1_5_f16.gguf -c 40960 --n-gpu-layers 41 --port 8001 --mmproj ../models/llava13b1_5/llava13b1_5_mmproj_f16.gguf -np 10 -cb --host 0.0.0.0 --threads 24

The model I am using -
https://huggingface.co/mys/ggml_llava-v1.5-13b/tree/main

I am using the F16 model with mmproj file.

Documentation reference

https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md

My GPU specs

image

My CPU specs

image

Loading llama cpp server for llava, using slot 0 for inference.

ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
{"timestamp":1708365483,"level":"INFO","function":"main","line":2536,"message":"build info","build":2167,"commit":"5bf2b94d"}
{"timestamp":1708365483,"level":"INFO","function":"main","line":2539,"message":"system info","n_threads":24,"n_threads_batch":-1,"total_threads":28,"system_info":"AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | "}

llama server listening at http://0.0.0.0:8001

{"timestamp":1708365483,"level":"INFO","function":"main","line":2643,"message":"HTTP server listening","port":"8001","hostname":"0.0.0.0"}
Multi Modal Mode Enabledclip_model_load: model name:   openai/clip-vit-large-patch14-336
clip_model_load: description:  image encoder for LLaVA
clip_model_load: GGUF version: 2
clip_model_load: alignment:    32
clip_model_load: n_tensors:    377
clip_model_load: n_kv:         18
clip_model_load: ftype:        f16

clip_model_load: loaded meta data with 18 key-value pairs and 377 tensors from ../models/llava13b1_5/llava13b1_5_mmproj_f16.gguf
clip_model_load: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
clip_model_load: - kv   0:                       general.architecture str              = clip
clip_model_load: - kv   1:                      clip.has_text_encoder bool             = false
clip_model_load: - kv   2:                    clip.has_vision_encoder bool             = true
clip_model_load: - kv   3:                   clip.has_llava_projector bool             = true
clip_model_load: - kv   4:                          general.file_type u32              = 1
clip_model_load: - kv   5:                               general.name str              = openai/clip-vit-large-patch14-336
clip_model_load: - kv   6:                        general.description str              = image encoder for LLaVA
clip_model_load: - kv   7:                     clip.vision.image_size u32              = 336
clip_model_load: - kv   8:                     clip.vision.patch_size u32              = 14
clip_model_load: - kv   9:               clip.vision.embedding_length u32              = 1024
clip_model_load: - kv  10:            clip.vision.feed_forward_length u32              = 4096
clip_model_load: - kv  11:                 clip.vision.projection_dim u32              = 768
clip_model_load: - kv  12:           clip.vision.attention.head_count u32              = 16
clip_model_load: - kv  13:   clip.vision.attention.layer_norm_epsilon f32              = 0.000010
clip_model_load: - kv  14:                    clip.vision.block_count u32              = 23
clip_model_load: - kv  15:                     clip.vision.image_mean arr[f32,3]       = [0.481455, 0.457828, 0.408211]
clip_model_load: - kv  16:                      clip.vision.image_std arr[f32,3]       = [0.268630, 0.261303, 0.275777]
clip_model_load: - kv  17:                              clip.use_gelu bool             = false
clip_model_load: - type  f32:  235 tensors
clip_model_load: - type  f16:  142 tensors
clip_model_load: CLIP using CUDA backend
clip_model_load: text_encoder:   0
clip_model_load: vision_encoder: 1
clip_model_load: llava_projector:  1
clip_model_load: model size:     615.49 MB
clip_model_load: metadata size:  0.14 MB
clip_model_load: params backend buffer size =  615.49 MB (377 tensors)
key clip.vision.image_grid_pinpoints not found in file
key clip.vision.mm_patch_merge_type not found in file
key clip.vision.image_crop_resolution not found in file
clip_model_load: compute allocated memory: 32.89 MB
llama_model_loader: loaded meta data with 18 key-value pairs and 363 tensors from ../models/llava13b1_5/llava13b1_5_f16.gguf (version GGUF V2)
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = LLaMA v2
llama_model_loader: - kv   2:                       llama.context_length u32              = 4096
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 5120
llama_model_loader: - kv   4:                          llama.block_count u32              = 40
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 13824
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 40
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 40
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 1
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - type  f32:   81 tensors
llama_model_loader: - type  f16:  282 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V2
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 4096
llm_load_print_meta: n_embd           = 5120
llm_load_print_meta: n_head           = 40
llm_load_print_meta: n_head_kv        = 40
llm_load_print_meta: n_layer          = 40
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 5120
llm_load_print_meta: n_embd_v_gqa     = 5120
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 13824
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 13B
llm_load_print_meta: model ftype      = F16
llm_load_print_meta: model params     = 13.02 B
llm_load_print_meta: model size       = 24.24 GiB (16.00 BPW) 
llm_load_print_meta: general.name     = LLaMA v2
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.28 MiB
llm_load_tensors: offloading 40 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 41/41 layers to GPU
llm_load_tensors:        CPU buffer size =   312.50 MiB
llm_load_tensors:      CUDA0 buffer size = 24514.08 MiB
...................................................................................................
llama_new_context_with_model: n_ctx      = 40960
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size = 32000.00 MiB
llama_new_context_with_model: KV self size  = 32000.00 MiB, K (f16): 16000.00 MiB, V (f16): 16000.00 MiB
llama_new_context_with_model:  CUDA_Host input buffer size   =    91.16 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =  3320.00 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    10.00 MiB
llama_new_context_with_model: graph splits (measure): 3
Available slots:
 -> Slot 0 - max context: 4096
 -> Slot 1 - max context: 4096
 -> Slot 2 - max context: 4096
 -> Slot 3 - max context: 4096
 -> Slot 4 - max context: 4096
 -> Slot 5 - max context: 4096
 -> Slot 6 - max context: 4096
 -> Slot 7 - max context: 4096
 -> Slot 8 - max context: 4096
 -> Slot 9 - max context: 4096
{"timestamp":1708365486,"level":"INFO","function":"main","line":2664,"message":"model loaded"}
all slots are idle and system prompt is empty, clear the KV cache
slot 0 - loaded image
slot 0 is processing [task id: 0]
slot 0 : kv cache rm - [0, end)
slot 0 - encoding image [id: 1]

print_timings: prompt eval time =     349.34 ms /     1 tokens (  349.34 ms per token,     2.86 tokens per second)
print_timings:        eval time =    1599.23 ms /    72 runs   (   22.21 ms per token,    45.02 tokens per second)
print_timings:       total time =    1948.57 ms
slot 0 released (73 tokens in cache)

image

When using the other slot, that is parallel inferencing -

slot 1 is processing [task id: 74]
slot 1 : kv cache rm - [0, end)
slot 1 - encoding image [id: 1]

print_timings: prompt eval time =     278.78 ms /     1 tokens (  278.78 ms per token,     3.59 tokens per second)
print_timings:        eval time =    2573.45 ms /   113 runs   (   22.77 ms per token,    43.91 tokens per second)
print_timings:       total time =    2852.24 ms
slot 1 released (114 tokens in cache)

image

Prompt
model_type parameter in my payload is only for a proxy server that is rerouting all the requests.

image

Image looks like this

image

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions