Description
When I am trying to do parallel inferencing on llama cpp server for multimodal, I am getting the correct output for slot 0, but for other slots, I am not. Does that mean that clip is only being loaded on one slot? I can see some clip layers failing to load.
Here is my llama cpp server code that I use.
./server -m ../models/llava13b1_5/llava13b1_5_f16.gguf -c 40960 --n-gpu-layers 41 --port 8001 --mmproj ../models/llava13b1_5/llava13b1_5_mmproj_f16.gguf -np 10 -cb --host 0.0.0.0 --threads 24
The model I am using -
https://huggingface.co/mys/ggml_llava-v1.5-13b/tree/main
I am using the F16 model with mmproj file.
Documentation reference
https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md
My GPU specs
My CPU specs
Loading llama cpp server for llava, using slot 0 for inference.
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
Device 0: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
{"timestamp":1708365483,"level":"INFO","function":"main","line":2536,"message":"build info","build":2167,"commit":"5bf2b94d"}
{"timestamp":1708365483,"level":"INFO","function":"main","line":2539,"message":"system info","n_threads":24,"n_threads_batch":-1,"total_threads":28,"system_info":"AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | "}
llama server listening at http://0.0.0.0:8001
{"timestamp":1708365483,"level":"INFO","function":"main","line":2643,"message":"HTTP server listening","port":"8001","hostname":"0.0.0.0"}
Multi Modal Mode Enabledclip_model_load: model name: openai/clip-vit-large-patch14-336
clip_model_load: description: image encoder for LLaVA
clip_model_load: GGUF version: 2
clip_model_load: alignment: 32
clip_model_load: n_tensors: 377
clip_model_load: n_kv: 18
clip_model_load: ftype: f16
clip_model_load: loaded meta data with 18 key-value pairs and 377 tensors from ../models/llava13b1_5/llava13b1_5_mmproj_f16.gguf
clip_model_load: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
clip_model_load: - kv 0: general.architecture str = clip
clip_model_load: - kv 1: clip.has_text_encoder bool = false
clip_model_load: - kv 2: clip.has_vision_encoder bool = true
clip_model_load: - kv 3: clip.has_llava_projector bool = true
clip_model_load: - kv 4: general.file_type u32 = 1
clip_model_load: - kv 5: general.name str = openai/clip-vit-large-patch14-336
clip_model_load: - kv 6: general.description str = image encoder for LLaVA
clip_model_load: - kv 7: clip.vision.image_size u32 = 336
clip_model_load: - kv 8: clip.vision.patch_size u32 = 14
clip_model_load: - kv 9: clip.vision.embedding_length u32 = 1024
clip_model_load: - kv 10: clip.vision.feed_forward_length u32 = 4096
clip_model_load: - kv 11: clip.vision.projection_dim u32 = 768
clip_model_load: - kv 12: clip.vision.attention.head_count u32 = 16
clip_model_load: - kv 13: clip.vision.attention.layer_norm_epsilon f32 = 0.000010
clip_model_load: - kv 14: clip.vision.block_count u32 = 23
clip_model_load: - kv 15: clip.vision.image_mean arr[f32,3] = [0.481455, 0.457828, 0.408211]
clip_model_load: - kv 16: clip.vision.image_std arr[f32,3] = [0.268630, 0.261303, 0.275777]
clip_model_load: - kv 17: clip.use_gelu bool = false
clip_model_load: - type f32: 235 tensors
clip_model_load: - type f16: 142 tensors
clip_model_load: CLIP using CUDA backend
clip_model_load: text_encoder: 0
clip_model_load: vision_encoder: 1
clip_model_load: llava_projector: 1
clip_model_load: model size: 615.49 MB
clip_model_load: metadata size: 0.14 MB
clip_model_load: params backend buffer size = 615.49 MB (377 tensors)
key clip.vision.image_grid_pinpoints not found in file
key clip.vision.mm_patch_merge_type not found in file
key clip.vision.image_crop_resolution not found in file
clip_model_load: compute allocated memory: 32.89 MB
llama_model_loader: loaded meta data with 18 key-value pairs and 363 tensors from ../models/llava13b1_5/llava13b1_5_f16.gguf (version GGUF V2)
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = LLaMA v2
llama_model_loader: - kv 2: llama.context_length u32 = 4096
llama_model_loader: - kv 3: llama.embedding_length u32 = 5120
llama_model_loader: - kv 4: llama.block_count u32 = 40
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 13824
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 40
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 40
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 10: general.file_type u32 = 1
llama_model_loader: - kv 11: tokenizer.ggml.model str = llama
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 17: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - type f32: 81 tensors
llama_model_loader: - type f16: 282 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format = GGUF V2
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_embd = 5120
llm_load_print_meta: n_head = 40
llm_load_print_meta: n_head_kv = 40
llm_load_print_meta: n_layer = 40
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 5120
llm_load_print_meta: n_embd_v_gqa = 5120
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 13824
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 4096
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: model type = 13B
llm_load_print_meta: model ftype = F16
llm_load_print_meta: model params = 13.02 B
llm_load_print_meta: model size = 24.24 GiB (16.00 BPW)
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.28 MiB
llm_load_tensors: offloading 40 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 41/41 layers to GPU
llm_load_tensors: CPU buffer size = 312.50 MiB
llm_load_tensors: CUDA0 buffer size = 24514.08 MiB
...................................................................................................
llama_new_context_with_model: n_ctx = 40960
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 32000.00 MiB
llama_new_context_with_model: KV self size = 32000.00 MiB, K (f16): 16000.00 MiB, V (f16): 16000.00 MiB
llama_new_context_with_model: CUDA_Host input buffer size = 91.16 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 3320.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 10.00 MiB
llama_new_context_with_model: graph splits (measure): 3
Available slots:
-> Slot 0 - max context: 4096
-> Slot 1 - max context: 4096
-> Slot 2 - max context: 4096
-> Slot 3 - max context: 4096
-> Slot 4 - max context: 4096
-> Slot 5 - max context: 4096
-> Slot 6 - max context: 4096
-> Slot 7 - max context: 4096
-> Slot 8 - max context: 4096
-> Slot 9 - max context: 4096
{"timestamp":1708365486,"level":"INFO","function":"main","line":2664,"message":"model loaded"}
all slots are idle and system prompt is empty, clear the KV cache
slot 0 - loaded image
slot 0 is processing [task id: 0]
slot 0 : kv cache rm - [0, end)
slot 0 - encoding image [id: 1]
print_timings: prompt eval time = 349.34 ms / 1 tokens ( 349.34 ms per token, 2.86 tokens per second)
print_timings: eval time = 1599.23 ms / 72 runs ( 22.21 ms per token, 45.02 tokens per second)
print_timings: total time = 1948.57 ms
slot 0 released (73 tokens in cache)
When using the other slot, that is parallel inferencing -
slot 1 is processing [task id: 74]
slot 1 : kv cache rm - [0, end)
slot 1 - encoding image [id: 1]
print_timings: prompt eval time = 278.78 ms / 1 tokens ( 278.78 ms per token, 3.59 tokens per second)
print_timings: eval time = 2573.45 ms / 113 runs ( 22.77 ms per token, 43.91 tokens per second)
print_timings: total time = 2852.24 ms
slot 1 released (114 tokens in cache)
Prompt
model_type parameter in my payload is only for a proxy server that is rerouting all the requests.
Image looks like this