Skip to content

Eval bug: ggml_cuda_compute_forward: MUL_MAT failed when using FA + MLA on DeepSeekv3 0324, on mixed CPU + GPU #13252

Closed
@Panchovix

Description

@Panchovix

Name and Version

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 4 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
  Device 1: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
  Device 2: NVIDIA GeForce RTX 5090, compute capability 12.0, VMM: yes
  Device 3: NVIDIA RTX A6000, compute capability 8.6, VMM: yes
version: 5255 (d24d5928)
built with gcc-14 (GCC) 14.2.1 20250210 (Red Hat 14.2.1-8) for x86_64-redhat-linux

Operating systems

Linux

GGML backends

CUDA

Hardware

Ryzen 7 7800X3D, 192GB RAM, 5090+4090x2+A6000

Models

Deepseek V3 0324

Problem description & steps to reproduce

Hi there, many thanks for all the work.

I was trying to use Deepseek V3 0324 Q2_K_XL (https://huggingface.co/unsloth/DeepSeek-V3-0324-GGUF-UD/tree/main/UD-Q2_K_XL) on my mixed PC, using ~120GB RAM and the rest on RAM.

When using the -fa flag, I get MUL_MAT failed.

When not using -fa, it works fine.

Model was being loaded with

./llama-server -m '/run/media/pancho/DE1652041651DDD9/HuggingFaceModelDownloader/Storage/GGUFs/DeepSeek-V3-0324-UD-Q2_K_XL-merged.gguf' -c 16384 --no-mmap --no-warmup -fa -v -ngl 99 --override-tensor 'blk\.(2[5-9]|[3-6][0-9])\..*_exps\.=CPU' --override-tensor 'blk\.([1-6])\..*_exps\.=CUDA0' --override-tensor 'blk\.([7-9]|1[0])\..*_exps\.=CUDA1' --override-tensor 'blk\.(1[1-5])\..*_exps\.=CUDA2' --override-tensor 'blk\.(1[6-9]|2[0-4])\..*_exps\.=CUDA3'

First Bad Commit

N/A

Relevant log output

/llama-server -m '/run/media/pancho/DE1652041651DDD9/HuggingFaceModelDownloader/Storage/GGUFs/DeepSeek-V3-0324-UD-Q2_K_XL-merged.gguf' -c 16384 --no-mmap --no-warmup -fa -ngl 99 --override-tensor 'blk\.(2[5-9]|[3-6][0-9])\..*_exps\.=CPU' --override-tensor 'blk\.([1-6])\..*_exps\.=CUDA0' --override-tensor 'blk\.([7-9]|1[0])\..*_exps\.=CUDA1' --override-tensor 'blk\.(1[1-5])\..*_exps\.=CUDA2' --override-tensor 'blk\.(1[6-9]|2[0-4])\..*_exps\.=CUDA3'
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 4 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
  Device 1: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
  Device 2: NVIDIA GeForce RTX 5090, compute capability 12.0, VMM: yes
  Device 3: NVIDIA RTX A6000, compute capability 8.6, VMM: yes
build: 5255 (d24d5928) with gcc-14 (GCC) 14.2.1 20250210 (Red Hat 14.2.1-8) for x86_64-redhat-linux
system info: n_threads = 8, n_threads_batch = 8, total_threads = 16

system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CUDA : ARCHS = 860,890,1200 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | FA_ALL_QUANTS = 1 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 15
main: loading model
srv    load_model: loading model '/run/media/pancho/DE1652041651DDD9/HuggingFaceModelDownloader/Storage/GGUFs/DeepSeek-V3-0324-UD-Q2_K_XL-merged.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4090) - 23698 MiB free
llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 4090) - 23698 MiB free
llama_model_load_from_file_impl: using device CUDA2 (NVIDIA GeForce RTX 5090) - 29679 MiB free
llama_model_load_from_file_impl: using device CUDA3 (NVIDIA RTX A6000) - 48281 MiB free
llama_model_loader: loaded meta data with 64 key-value pairs and 1086 tensors from /run/media/pancho/DE1652041651DDD9/HuggingFaceModelDownloader/Storage/GGUFs/DeepSeek-V3-0324-UD-Q2_K_XL-merged.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = deepseek2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Deepseek-V3-0324
llama_model_loader: - kv   3:                            general.version str              = V3-0324
llama_model_loader: - kv   4:                           general.basename str              = Deepseek-V3-0324
llama_model_loader: - kv   5:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   6:                         general.size_label str              = 256x20B
llama_model_loader: - kv   7:                            general.license str              = mit
llama_model_loader: - kv   8:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv   9:                   general.base_model.count u32              = 1
llama_model_loader: - kv  10:                  general.base_model.0.name str              = DeepSeek V3 0324
llama_model_loader: - kv  11:               general.base_model.0.version str              = V3-0324
llama_model_loader: - kv  12:          general.base_model.0.organization str              = Deepseek Ai
llama_model_loader: - kv  13:              general.base_model.0.repo_url str              = https://huggingface.co/deepseek-ai/De...
llama_model_loader: - kv  14:                               general.tags arr[str,4]       = ["deepseek_v3", "deepseek", "unsloth"...
llama_model_loader: - kv  15:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  16:                      deepseek2.block_count u32              = 61
llama_model_loader: - kv  17:                   deepseek2.context_length u32              = 163840
llama_model_loader: - kv  18:                 deepseek2.embedding_length u32              = 7168
llama_model_loader: - kv  19:              deepseek2.feed_forward_length u32              = 18432
llama_model_loader: - kv  20:             deepseek2.attention.head_count u32              = 128
llama_model_loader: - kv  21:          deepseek2.attention.head_count_kv u32              = 1
llama_model_loader: - kv  22:                   deepseek2.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  23: deepseek2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  24:                deepseek2.expert_used_count u32              = 8
llama_model_loader: - kv  25:        deepseek2.leading_dense_block_count u32              = 3
llama_model_loader: - kv  26:                       deepseek2.vocab_size u32              = 129280
llama_model_loader: - kv  27:            deepseek2.attention.q_lora_rank u32              = 1536
llama_model_loader: - kv  28:           deepseek2.attention.kv_lora_rank u32              = 512
llama_model_loader: - kv  29:             deepseek2.attention.key_length u32              = 576
llama_model_loader: - kv  30:           deepseek2.attention.value_length u32              = 512
llama_model_loader: - kv  31:         deepseek2.attention.key_length_mla u32              = 192
llama_model_loader: - kv  32:       deepseek2.attention.value_length_mla u32              = 128
llama_model_loader: - kv  33:       deepseek2.expert_feed_forward_length u32              = 2048
llama_model_loader: - kv  34:                     deepseek2.expert_count u32              = 256
llama_model_loader: - kv  35:              deepseek2.expert_shared_count u32              = 1
llama_model_loader: - kv  36:             deepseek2.expert_weights_scale f32              = 2.500000
llama_model_loader: - kv  37:              deepseek2.expert_weights_norm bool             = true
llama_model_loader: - kv  38:               deepseek2.expert_gating_func u32              = 2
llama_model_loader: - kv  39:             deepseek2.rope.dimension_count u32              = 64
llama_model_loader: - kv  40:                deepseek2.rope.scaling.type str              = yarn
llama_model_loader: - kv  41:              deepseek2.rope.scaling.factor f32              = 40.000000
llama_model_loader: - kv  42: deepseek2.rope.scaling.original_context_length u32              = 4096
llama_model_loader: - kv  43: deepseek2.rope.scaling.yarn_log_multiplier f32              = 0.100000
llama_model_loader: - kv  44:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  45:                         tokenizer.ggml.pre str              = deepseek-v3
llama_model_loader: - kv  46:                      tokenizer.ggml.tokens arr[str,129280]  = ["<|begin▁of▁sentence|>", "<�...
llama_model_loader: - kv  47:                  tokenizer.ggml.token_type arr[i32,129280]  = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  48:                      tokenizer.ggml.merges arr[str,127741]  = ["Ġ t", "Ġ a", "i n", "Ġ Ġ", "h e...
llama_model_loader: - kv  49:                tokenizer.ggml.bos_token_id u32              = 0
llama_model_loader: - kv  50:                tokenizer.ggml.eos_token_id u32              = 1
llama_model_loader: - kv  51:            tokenizer.ggml.padding_token_id u32              = 2
llama_model_loader: - kv  52:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  53:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  54:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  55:               general.quantization_version u32              = 2
llama_model_loader: - kv  56:                          general.file_type u32              = 10
llama_model_loader: - kv  57:                      quantize.imatrix.file str              = DeepSeek-V3-0324-GGUF/imatrix_unsloth...
llama_model_loader: - kv  58:                   quantize.imatrix.dataset str              = unsloth_calibration_DeepSeek-V3-0324.txt
llama_model_loader: - kv  59:             quantize.imatrix.entries_count i32              = 720
llama_model_loader: - kv  60:              quantize.imatrix.chunks_count i32              = 60
llama_model_loader: - kv  61:                                   split.no u16              = 0
llama_model_loader: - kv  62:                        split.tensors.count i32              = 1086
llama_model_loader: - kv  63:                                split.count u16              = 0
llama_model_loader: - type  f32:  361 tensors
llama_model_loader: - type q8_0:  122 tensors
llama_model_loader: - type q2_K:  122 tensors
llama_model_loader: - type q3_K:   54 tensors
llama_model_loader: - type q4_K:  389 tensors
llama_model_loader: - type q5_K:   23 tensors
llama_model_loader: - type q6_K:   15 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q2_K - Medium
print_info: file size   = 233.18 GiB (2.98 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 818
load: token to piece cache size = 0.8223 MB
print_info: arch             = deepseek2
print_info: vocab_only       = 0
print_info: n_ctx_train      = 163840
print_info: n_embd           = 7168
print_info: n_layer          = 61
print_info: n_head           = 128
print_info: n_head_kv        = 1
print_info: n_rot            = 64
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 576
print_info: n_embd_head_v    = 512
print_info: n_gqa            = 128
print_info: n_embd_k_gqa     = 576
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 18432
print_info: n_expert         = 256
print_info: n_expert_used    = 8
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = yarn
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 0.025
print_info: n_ctx_orig_yarn  = 4096
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 671B
print_info: model params     = 671.03 B
print_info: general.name     = Deepseek-V3-0324
print_info: n_layer_dense_lead   = 3
print_info: n_lora_q             = 1536
print_info: n_lora_kv            = 512
print_info: n_embd_head_k_mla    = 192
print_info: n_embd_head_v_mla    = 128
print_info: n_ff_exp             = 2048
print_info: n_expert_shared      = 1
print_info: expert_weights_scale = 2.5
print_info: expert_weights_norm  = 1
print_info: expert_gating_func   = sigmoid
print_info: rope_yarn_log_mul    = 0.1000
print_info: vocab type       = BPE
print_info: n_vocab          = 129280
print_info: n_merges         = 127741
print_info: BOS token        = 0 '<|begin▁of▁sentence|>'
print_info: EOS token        = 1 '<|end▁of▁sentence|>'
print_info: EOT token        = 1 '<|end▁of▁sentence|>'
print_info: PAD token        = 2 '<|▁pad▁|>'
print_info: LF token         = 201 'Ċ'
print_info: FIM PRE token    = 128801 '<|fim▁begin|>'
print_info: FIM SUF token    = 128800 '<|fim▁hole|>'
print_info: FIM MID token    = 128802 '<|fim▁end|>'
print_info: EOG token        = 1 '<|end▁of▁sentence|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors: offloading 61 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 62/62 layers to GPU
load_tensors:        CUDA0 model buffer size = 18097.53 MiB
load_tensors:        CUDA1 model buffer size = 17719.83 MiB
load_tensors:        CUDA2 model buffer size = 22027.26 MiB
load_tensors:        CUDA3 model buffer size = 38894.36 MiB
load_tensors:          CPU model buffer size = 142037.11 MiB
load_all_data: using async uploads for device CUDA0, buffer type CUDA0, backend CUDA0
.......load_all_data: using async uploads for device CUDA1, buffer type CUDA1, backend CUDA1
.......load_all_data: using async uploads for device CUDA2, buffer type CUDA2, backend CUDA2
..........load_all_data: using async uploads for device CUDA3, buffer type CUDA3, backend CUDA3
................load_all_data: no device found for buffer type CPU for async uploads
............................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 16384
llama_context: n_ctx_per_seq = 16384
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 1
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 0.025
llama_context: n_ctx_per_seq (16384) < n_ctx_train (163840) -- the full capacity of the model will not be utilized
set_abort_callback: call
llama_context:  CUDA_Host  output buffer size =     0.49 MiB
llama_context: n_ctx = 16384
llama_context: n_ctx = 16384 (padded)
init: kv_size = 16384, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 61, can_shift = 1
init: layer   0: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer   1: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer   2: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer   3: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer   4: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer   5: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer   6: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer   7: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer   8: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer   9: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer  10: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer  11: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA0
init: layer  12: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  13: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  14: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  15: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  16: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  17: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  18: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  19: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  20: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  21: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  22: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  23: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA1
init: layer  24: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  25: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  26: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  27: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  28: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  29: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  30: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  31: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  32: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  33: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  34: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  35: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  36: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  37: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  38: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA2
init: layer  39: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  40: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  41: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  42: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  43: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  44: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  45: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  46: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  47: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  48: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  49: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  50: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  51: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  52: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  53: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  54: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  55: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  56: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  57: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  58: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  59: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init: layer  60: n_embd_k_gqa = 576, n_embd_v_gqa = 512, dev = CUDA3
init:      CUDA0 KV buffer size =   408.00 MiB
init:      CUDA1 KV buffer size =   408.00 MiB
init:      CUDA2 KV buffer size =   510.00 MiB
init:      CUDA3 KV buffer size =   748.00 MiB
llama_context: KV self size  = 2074.00 MiB, K (f16): 1098.00 MiB, V (f16):  976.00 MiB
llama_context: enumerating backends
llama_context: backend_ptrs.size() = 5
llama_context: max_nodes = 65536
llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0
llama_context: reserving graph for n_tokens = 512, n_seqs = 1
llama_context: reserving graph for n_tokens = 1, n_seqs = 1
llama_context: reserving graph for n_tokens = 512, n_seqs = 1
llama_context:      CUDA0 compute buffer size =  3238.50 MiB
llama_context:      CUDA1 compute buffer size =   378.00 MiB
llama_context:      CUDA2 compute buffer size =   378.00 MiB
llama_context:      CUDA3 compute buffer size =   378.00 MiB
llama_context:  CUDA_Host compute buffer size =   336.01 MiB
llama_context: graph nodes  = 4660
llama_context: graph splits = 307 (with bs=512), 235 (with bs=1)
clear_adapter_lora: call
common_init_from_params: setting dry_penalty_last_n to ctx_size = 16384
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 16384
slot        reset: id  0 | task -1 | 

...

slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.632294
srv  update_slots: decoding batch, n_tokens = 2048
set_embeddings: value = 0
clear_adapter_lora: call
/run/media/pancho/6AE20D1AE20CEBDF/ChatIAs/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:75: ggml_cuda_compute_forward: MUL_MAT failed
CUDA error: invalid configuration argument
  current device: 0, in function ggml_cuda_compute_forward at /run/media/pancho/6AE20D1AE20CEBDF/ChatIAs/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:2344
  err
CUDA error
[New LWP 64005]
[New LWP 64004]
[New LWP 64003]
[New LWP 64002]
[New LWP 64001]
[New LWP 64000]
[New LWP 63999]
[New LWP 63605]
[New LWP 63604]
[New LWP 63603]
[New LWP 63602]
[New LWP 63601]
[New LWP 63600]
[New LWP 63599]
[New LWP 63598]
[New LWP 63597]
[New LWP 63596]
[New LWP 63595]
[New LWP 63594]
[New LWP 63593]
[New LWP 63592]
[New LWP 63591]
[New LWP 63590]
[New LWP 63589]
[New LWP 63588]
[New LWP 63587]
[New LWP 63586]
[New LWP 63585]
[New LWP 63584]
[New LWP 63583]
[New LWP 63582]
[New LWP 63581]
[New LWP 63580]

This GDB supports auto-downloading debuginfo from the following URLs:
  <https://debuginfod.fedoraproject.org/>
Enable debuginfod for this session? (y or [n]) [answered N; input not from terminal]
Debuginfod has been disabled.
To make this setting permanent, add 'set debuginfod enabled off' to .gdbinit.
Function(s) ^std::(move|forward|as_const|(__)?addressof) will be skipped when stepping.
Function(s) ^std::(shared|unique)_ptr<.*>::(get|operator) will be skipped when stepping.
Function(s) ^std::(basic_string|vector|array|deque|(forward_)?list|(unordered_|flat_)?(multi)?(map|set)|span)<.*>::(c?r?(begin|end)|front|back|data|size|empty) will be skipped when stepping.
Function(s) ^std::(basic_string|vector|array|deque|span)<.*>::operator.] will be skipped when stepping.
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
0x00007f47c40876c2 in __syscall_cancel_arch () from /lib64/libc.so.6
#0  0x00007f47c40876c2 in __syscall_cancel_arch () from /lib64/libc.so.6
#1  0x00007f47c407b9da in __internal_syscall_cancel () from /lib64/libc.so.6
#2  0x00007f47c407ba24 in __syscall_cancel () from /lib64/libc.so.6
#3  0x00007f47c40eb5af in wait4 () from /lib64/libc.so.6
#4  0x00007f47c8b35fb6 in ggml_abort () from libggml-base.so
#5  0x00007f47c8c93963 in ggml_cuda_error(char const*, char const*, char const*, int, char const*) () from libggml-cuda.so
#6  0x00007f47c8c9edbe in ggml_backend_cuda_graph_compute(ggml_backend*, ggml_cgraph*) () from libggml-cuda.so
#7  0x00007f47c8b4b344 in ggml_backend_sched_graph_compute_async () from libggml-base.so
#8  0x00007f47d5b9d371 in llama_context::graph_compute(ggml_cgraph*, bool) () from libllama.so
#9  0x00007f47d5ba0ef8 in llama_context::decode(llama_batch&) () from libllama.so
#10 0x00007f47d5ba219b in llama_decode () from libllama.so
#11 0x000000000048b040 in server_context::update_slots() ()
#12 0x000000000045b25c in server_queue::start_loop() ()
#13 0x0000000000426020 in main ()
[Inferior 1 (process 63579) detached]

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions