Closed
Description
Name and Version
> llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
Device 0: NVIDIA RTX 5000 Ada Generation, compute capability 8.9, VMM: yes
Device 1: NVIDIA RTX A2000, compute capability 8.6, VMM: yes
version: 5064 (bd3f59f8)
built with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
Operating systems
Linux
Which llama.cpp modules do you know to be affected?
llama-cli, llama-server
Command line
llama-cli -m deepseek-v2-lite-Q8_0.gguf -ot exp=CPU -ngl 99
Problem description & steps to reproduce
Something recently seems to have broken the option to override model tensor buffers added in #11397:
> git clone https://github.com/ggerganov/llama.cpp
> cd llama.cpp
> cmake -B build -DGGML_CUDA=ON -DGGML_NATIVE=ON
> cmake --build build --config Release -- -j 44
> llama-cli -m deepseek-v2-lite-Q8_0.gguf -ot exp=CPU -ngl 99
It successfully processes the prompt, seems to write a single token and then crashes with this:
CUDA error: unspecified launch failure
current device: 0, in function ggml_backend_cuda_synchronize at /home/juk/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:2437
cudaStreamSynchronize(cuda_ctx->stream())
- I have also tested on a full
BF16
version ofdeepseek-v2-lite
and it gets the same problem. - I have also tested on a
Q8_0
ofdeepseek-r1
and it gets the same problem.
First Bad Commit
Unsure, but recent.
Relevant log output
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
Device 0: NVIDIA RTX 5000 Ada Generation, compute capability 8.9, VMM: yes
Device 1: NVIDIA RTX A2000, compute capability 8.6, VMM: yes
build: 5064 (bd3f59f8) with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA RTX 5000 Ada Generation) - 31921 MiB free
llama_model_load_from_file_impl: using device CUDA1 (NVIDIA RTX A2000) - 5719 MiB free
llama_model_loader: loaded meta data with 47 key-value pairs and 377 tensors from /home/juk/models/gguf/deepseek-v2-lite-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = deepseek2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = DeepSeek V2 Lite Chat
llama_model_loader: - kv 3: general.finetune str = Chat
llama_model_loader: - kv 4: general.basename str = DeepSeek-V2-Lite
llama_model_loader: - kv 5: general.size_label str = 64x1.5B
llama_model_loader: - kv 6: general.license str = other
llama_model_loader: - kv 7: general.license.name str = deepseek
llama_model_loader: - kv 8: general.license.link str = https://github.com/deepseek-ai/DeepSe...
llama_model_loader: - kv 9: deepseek2.block_count u32 = 27
llama_model_loader: - kv 10: deepseek2.context_length u32 = 163840
llama_model_loader: - kv 11: deepseek2.embedding_length u32 = 2048
llama_model_loader: - kv 12: deepseek2.feed_forward_length u32 = 10944
llama_model_loader: - kv 13: deepseek2.attention.head_count u32 = 16
llama_model_loader: - kv 14: deepseek2.attention.head_count_kv u32 = 16
llama_model_loader: - kv 15: deepseek2.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 16: deepseek2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 17: deepseek2.expert_used_count u32 = 6
llama_model_loader: - kv 18: deepseek2.leading_dense_block_count u32 = 1
llama_model_loader: - kv 19: deepseek2.vocab_size u32 = 102400
llama_model_loader: - kv 20: deepseek2.attention.kv_lora_rank u32 = 512
llama_model_loader: - kv 21: deepseek2.attention.key_length u32 = 192
llama_model_loader: - kv 22: deepseek2.attention.value_length u32 = 128
llama_model_loader: - kv 23: deepseek2.expert_feed_forward_length u32 = 1408
llama_model_loader: - kv 24: deepseek2.expert_count u32 = 64
llama_model_loader: - kv 25: deepseek2.expert_shared_count u32 = 2
llama_model_loader: - kv 26: deepseek2.expert_weights_scale f32 = 1.000000
llama_model_loader: - kv 27: deepseek2.expert_weights_norm bool = false
llama_model_loader: - kv 28: deepseek2.expert_gating_func u32 = 1
llama_model_loader: - kv 29: deepseek2.rope.dimension_count u32 = 64
llama_model_loader: - kv 30: deepseek2.rope.scaling.type str = yarn
llama_model_loader: - kv 31: deepseek2.rope.scaling.factor f32 = 40.000000
llama_model_loader: - kv 32: deepseek2.rope.scaling.original_context_length u32 = 4096
llama_model_loader: - kv 33: deepseek2.rope.scaling.yarn_log_multiplier f32 = 0.070700
llama_model_loader: - kv 34: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 35: tokenizer.ggml.pre str = deepseek-llm
llama_model_loader: - kv 36: tokenizer.ggml.tokens arr[str,102400] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 37: tokenizer.ggml.token_type arr[i32,102400] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 38: tokenizer.ggml.merges arr[str,99757] = ["Ġ Ġ", "Ġ t", "Ġ a", "i n", "h e...
llama_model_loader: - kv 39: tokenizer.ggml.bos_token_id u32 = 100000
llama_model_loader: - kv 40: tokenizer.ggml.eos_token_id u32 = 100001
llama_model_loader: - kv 41: tokenizer.ggml.padding_token_id u32 = 100001
llama_model_loader: - kv 42: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 43: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 44: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 45: general.quantization_version u32 = 2
llama_model_loader: - kv 46: general.file_type u32 = 7
llama_model_loader: - type f32: 108 tensors
llama_model_loader: - type q8_0: 269 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 15.55 GiB (8.51 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 2
load: token to piece cache size = 0.6408 MB
print_info: arch = deepseek2
print_info: vocab_only = 0
print_info: n_ctx_train = 163840
print_info: n_embd = 2048
print_info: n_layer = 27
print_info: n_head = 16
print_info: n_head_kv = 16
print_info: n_rot = 64
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 192
print_info: n_embd_head_v = 128
print_info: n_gqa = 1
print_info: n_embd_k_gqa = 3072
print_info: n_embd_v_gqa = 2048
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 10944
print_info: n_expert = 64
print_info: n_expert_used = 6
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = yarn
print_info: freq_base_train = 10000.0
print_info: freq_scale_train = 0.025
print_info: n_ctx_orig_yarn = 4096
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 16B
print_info: model params = 15.71 B
print_info: general.name = DeepSeek V2 Lite Chat
print_info: n_layer_dense_lead = 1
print_info: n_lora_q = 0
print_info: n_lora_kv = 512
print_info: n_ff_exp = 1408
print_info: n_expert_shared = 2
print_info: expert_weights_scale = 1.0
print_info: expert_weights_norm = 0
print_info: expert_gating_func = softmax
print_info: rope_yarn_log_mul = 0.0707
print_info: vocab type = BPE
print_info: n_vocab = 102400
print_info: n_merges = 99757
print_info: BOS token = 100000 '<|begin▁of▁sentence|>'
print_info: EOS token = 100001 '<|end▁of▁sentence|>'
print_info: EOT token = 100001 '<|end▁of▁sentence|>'
print_info: PAD token = 100001 '<|end▁of▁sentence|>'
print_info: LF token = 185 'Ċ'
print_info: EOG token = 100001 '<|end▁of▁sentence|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 27 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 28/28 layers to GPU
load_tensors: CUDA0 model buffer size = 414.74 MiB
load_tensors: CUDA1 model buffer size = 255.90 MiB
load_tensors: CPU_Mapped model buffer size = 15712.44 MiB
.......................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 10000.0
llama_context: freq_scale = 0.025
llama_context: n_ctx_per_seq (4096) < n_ctx_train (163840) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 0.39 MiB
init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 27, can_shift = 0
init: CUDA0 KV buffer size = 960.00 MiB
init: CUDA1 KV buffer size = 120.00 MiB
llama_context: KV self size = 1080.00 MiB, K (f16): 648.00 MiB, V (f16): 432.00 MiB
llama_context: CUDA0 compute buffer size = 406.75 MiB
llama_context: CUDA1 compute buffer size = 204.00 MiB
llama_context: CUDA_Host compute buffer size = 12.01 MiB
llama_context: graph nodes = 1951
llama_context: graph splits = 162 (with bs=512), 54 (with bs=1)
common_init_from_params: KV cache shifting is not supported for this context, disabling KV cache shifting
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 36
main: chat template is available, enabling conversation mode (disable it with -no-cnv)
main: chat template example:
You are a helpful assistant
User: Hello
Assistant: Hi there<|end▁of▁sentence|>User: How are you?
Assistant:
system_info: n_threads = 36 (n_threads_batch = 36) / 72 | CUDA : ARCHS = 860,890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
main: interactive mode on.
sampler seed: 2289461659
sampler params:
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 1
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to the AI.
- To return control without starting a new line, end your input with '/'.
- If you want to submit another line, end your input with '\'.
- Not using system message. To change it, set a different value via -sys PROMPT
> tell me a joke about pandas
/home/juk/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:75: CUDA error: an illegal memory access was encountered
current device: 0, in function ggml_backend_cuda_synchronize at /home/juk/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:2437
cudaStreamSynchronize(cuda_ctx->stream())
CUDA error
Using:
/usr/local/cuda-12.6/bin/compute-sanitizer lama-cli -m ~/models/gguf/deepseek-v2-lite-Q8_0.gguf -ot exp=CPU -ngl 99
gives this as last few sections:
========= Invalid __global__ read of size 8 bytes
========= at void cpy_f32_f16<&cpy_1_f32_f32>(const char *, char *, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, char **, int)+0x160
========= by thread (33,0,0) in block (1,0,0)
========= Address 0x7f3933c20420 is out of bounds
========= and is 1 bytes after the nearest allocation at 0x7f3933c20400 of size 32 bytes
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame: [0x33ec2d]
========= in /lib/x86_64-linux-gnu/libcuda.so.1
========= Host Frame: [0x227dc]
========= in /usr/local/cuda/lib64/libcudart.so.12
========= Host Frame:cudaGraphLaunch [0x776fe]
========= in /usr/local/cuda/lib64/libcudart.so.12
========= Host Frame:ggml_backend_cuda_graph_compute(ggml_backend*, ggml_cgraph*) [0x999a2]
========= in /home/juk/llama.cpp/build/bin/libggml-cuda.so
========= Host Frame:ggml_backend_sched_graph_compute_async [0x28cf2]
========= in /home/juk/llama.cpp/build/bin/libggml-base.so
========= Host Frame:llama_context::graph_compute(ggml_cgraph*, bool) [0x6cf08]
========= in /home/juk/llama.cpp/build/bin/libllama.so
========= Host Frame:llama_context::decode(llama_batch&) [0x6fd51]
========= in /home/juk/llama.cpp/build/bin/libllama.so
========= Host Frame:llama_decode [0x70fda]
========= in /home/juk/llama.cpp/build/bin/libllama.so
========= Host Frame:main [0x377ec]
========= in /home/juk/llama.cpp/build/bin/llama-cli
========= Host Frame: [0x27249]
========= in /lib/x86_64-linux-gnu/libc.so.6
========= Host Frame:__libc_start_main [0x27304]
========= in /lib/x86_64-linux-gnu/libc.so.6
========= Host Frame:_start [0x3bb80]
========= in /home/juk/llama.cpp/build/bin/llama-cli
=========
========= Invalid __global__ read of size 8 bytes
========= at void cpy_f32_f16<&cpy_1_f32_f32>(const char *, char *, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, char **, int)+0x160
========= by thread (34,0,0) in block (1,0,0)
========= Address 0x7f3933c20420 is out of bounds
========= and is 1 bytes after the nearest allocation at 0x7f3933c20400 of size 32 bytes
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame: [0x33ec2d]
========= in /lib/x86_64-linux-gnu/libcuda.so.1
========= Host Frame: [0x227dc]
========= in /usr/local/cuda/lib64/libcudart.so.12
========= Host Frame:cudaGraphLaunch [0x776fe]
========= in /usr/local/cuda/lib64/libcudart.so.12
========= Host Frame:ggml_backend_cuda_graph_compute(ggml_backend*, ggml_cgraph*) [0x999a2]
========= in /home/juk/llama.cpp/build/bin/libggml-cuda.so
========= Host Frame:ggml_backend_sched_graph_compute_async [0x28cf2]
========= in /home/juk/llama.cpp/build/bin/libggml-base.so
========= Host Frame:llama_context::graph_compute(ggml_cgraph*, bool) [0x6cf08]
========= in /home/juk/llama.cpp/build/bin/libllama.so
========= Host Frame:llama_context::decode(llama_batch&) [0x6fd51]
========= in /home/juk/llama.cpp/build/bin/libllama.so
========= Host Frame:llama_decode [0x70fda]
========= in /home/juk/llama.cpp/build/bin/libllama.so
========= Host Frame:main [0x377ec]
========= in /home/juk/llama.cpp/build/bin/llama-cli
========= Host Frame: [0x27249]
========= in /lib/x86_64-linux-gnu/libc.so.6
========= Host Frame:__libc_start_main [0x27304]
========= in /lib/x86_64-linux-gnu/libc.so.6
========= Host Frame:_start [0x3bb80]
========= in /home/juk/llama.cpp/build/bin/llama-cli
=========
========= Invalid __global__ read of size 8 bytes
========= at void cpy_f32_f16<&cpy_1_f32_f32>(const char *, char *, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, char **, int)+0x160
========= by thread (35,0,0) in block (1,0,0)
========= Address 0x7f3933c20420 is out of bounds
========= and is 1 bytes after the nearest allocation at 0x7f3933c20400 of size 32 bytes
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame: [0x33ec2d]
========= in /lib/x86_64-linux-gnu/libcuda.so.1
========= Host Frame: [0x227dc]
========= in /usr/local/cuda/lib64/libcudart.so.12
========= Host Frame:cudaGraphLaunch [0x776fe]
========= in /usr/local/cuda/lib64/libcudart.so.12
========= Host Frame:ggml_backend_cuda_graph_compute(ggml_backend*, ggml_cgraph*) [0x999a2]
========= in /home/juk/llama.cpp/build/bin/libggml-cuda.so
========= Host Frame:ggml_backend_sched_graph_compute_async [0x28cf2]
========= in /home/juk/llama.cpp/build/bin/libggml-base.so
========= Host Frame:llama_context::graph_compute(ggml_cgraph*, bool) [0x6cf08]
========= in /home/juk/llama.cpp/build/bin/libllama.so
========= Host Frame:llama_context::decode(llama_batch&) [0x6fd51]
========= in /home/juk/llama.cpp/build/bin/libllama.so
========= Host Frame:llama_decode [0x70fda]
========= in /home/juk/llama.cpp/build/bin/libllama.so
========= Host Frame:main [0x377ec]
========= in /home/juk/llama.cpp/build/bin/llama-cli
========= Host Frame: [0x27249]
========= in /lib/x86_64-linux-gnu/libc.so.6
========= Host Frame:__libc_start_main [0x27304]
========= in /lib/x86_64-linux-gnu/libc.so.6
========= Host Frame:_start [0x3bb80]
========= in /home/juk/llama.cpp/build/bin/llama-cli
=========
/home/juk/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:75: CUDA error
CUDA error: unspecified launch failure
current device: 0, in function ggml_backend_cuda_synchronize at /home/juk/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:2437
cudaStreamSynchronize(cuda_ctx->stream())