Closed
Description
What happened?
Hey all, I wanted to report a segmentation fault issue with llama-speculative. I have never once gotten this executable to work; I don't believe it is my command, as I have tried copy-pasting the speculative example commands as well.
Name and Version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 3 CUDA devices:
Device 0: Tesla P40, compute capability 6.1, VMM: yes
Device 1: Tesla P40, compute capability 6.1, VMM: yes
Device 2: Tesla P40, compute capability 6.1, VMM: yes
version: 4031 (d5a409e)
built with cc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 for x86_64-linux-gnu
What operating system are you seeing the problem on?
No response
Relevant log output
./LLM/llama.cpp/llama-speculative \
-m /home/ultimis/LLM/Models/mradermacher/Meta-Llama-3.1-70B-Instruct-i1-GGUF/Meta-Llama-3.1-70B-Instruct.i1-Q4_K_M.gguf \
-md /home/ultimis/LLM/Models/hugging-quants/Llama-3.2-1B-Instruct-Q8_0-GGUF/llama-3.2-1b-instruct-q8_0.gguf \
-p "// Quick-sort implementation in C (4 spaces indentation + detailed comments) and sample usage" \
-c 8000 -ngl 99 -ngld 30 --split-mode row --draft 16
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 3 CUDA devices:
Device 0: Tesla P40, compute capability 6.1, VMM: yes
Device 1: Tesla P40, compute capability 6.1, VMM: yes
Device 2: Tesla P40, compute capability 6.1, VMM: yes
build: 4031 (d5a409e5) with cc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 for x86_64-linux-gnu
llama_load_model_from_file: using device CUDA0 (Tesla P40) - 24286 MiB free
llama_load_model_from_file: using device CUDA1 (Tesla P40) - 24290 MiB free
llama_load_model_from_file: using device CUDA2 (Tesla P40) - 24290 MiB free
llama_model_loader: loaded meta data with 40 key-value pairs and 724 tensors from /home/ultimis/LLM/Models/mradermacher/Meta-Llama-3.1-70B-Instruct-i1-GGUF/Meta-Llama-3.1-70B-Instruct.i1-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Meta Llama 3.1 70B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3.1
llama_model_loader: - kv 5: general.size_label str = 70B
llama_model_loader: - kv 6: general.license str = llama3.1
llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv 9: llama.block_count u32 = 80
llama_model_loader: - kv 10: llama.context_length u32 = 131072
llama_model_loader: - kv 11: llama.embedding_length u32 = 8192
llama_model_loader: - kv 12: llama.feed_forward_length u32 = 28672
llama_model_loader: - kv 13: llama.attention.head_count u32 = 64
llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 17: general.file_type u32 = 15
llama_model_loader: - kv 18: llama.vocab_size u32 = 128256
llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 27: tokenizer.chat_template str = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv 28: general.quantization_version u32 = 2
llama_model_loader: - kv 29: general.url str = https://huggingface.co/mradermacher/M...
llama_model_loader: - kv 30: mradermacher.quantize_version str = 2
llama_model_loader: - kv 31: mradermacher.quantized_by str = mradermacher
llama_model_loader: - kv 32: mradermacher.quantized_at str = 2024-07-29T10:58:40+02:00
llama_model_loader: - kv 33: mradermacher.quantized_on str = db1
llama_model_loader: - kv 34: general.source.url str = https://huggingface.co/meta-llama/Met...
llama_model_loader: - kv 35: mradermacher.convert_type str = hf
llama_model_loader: - kv 36: quantize.imatrix.file str = Meta-Llama-3.1-70B-Instruct-i1-GGUF/i...
llama_model_loader: - kv 37: quantize.imatrix.dataset str = imatrix-training-full-3
llama_model_loader: - kv 38: quantize.imatrix.entries_count i32 = 560
llama_model_loader: - kv 39: quantize.imatrix.chunks_count i32 = 314
llama_model_loader: - type f32: 162 tensors
llama_model_loader: - type q4_K: 441 tensors
llama_model_loader: - type q5_K: 40 tensors
llama_model_loader: - type q6_K: 81 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 131072
llm_load_print_meta: n_embd = 8192
llm_load_print_meta: n_layer = 80
llm_load_print_meta: n_head = 64
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 8
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 28672
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 131072
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 70B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 70.55 B
llm_load_print_meta: model size = 39.59 GiB (4.82 BPW)
llm_load_print_meta: general.name = Meta Llama 3.1 70B Instruct
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token = 128008 '<|eom_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOG token = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 80 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 81/81 layers to GPU
llm_load_tensors: CPU_Mapped model buffer size = 563.62 MiB
llm_load_tensors: CUDA0 model buffer size = 1.69 MiB
llm_load_tensors: CUDA1 model buffer size = 1.69 MiB
llm_load_tensors: CUDA2 model buffer size = 1.66 MiB
llm_load_tensors: CUDA0_Split model buffer size = 13302.19 MiB
llm_load_tensors: CUDA1_Split model buffer size = 12949.31 MiB
llm_load_tensors: CUDA2_Split model buffer size = 13722.95 MiB
...................................................................................................
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 8000
llama_new_context_with_model: n_ctx_per_seq = 8000
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: n_ctx_per_seq (8000) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: CUDA0 KV buffer size = 843.75 MiB
llama_kv_cache_init: CUDA1 KV buffer size = 843.75 MiB
llama_kv_cache_init: CUDA2 KV buffer size = 812.50 MiB
llama_new_context_with_model: KV self size = 2500.00 MiB, K (f16): 1250.00 MiB, V (f16): 1250.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.49 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 1079.63 MiB
llama_new_context_with_model: CUDA1 compute buffer size = 1079.63 MiB
llama_new_context_with_model: CUDA2 compute buffer size = 1079.63 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 31.63 MiB
llama_new_context_with_model: graph nodes = 2566
llama_new_context_with_model: graph splits = 4
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
llama_load_model_from_file: using device CUDA0 (Tesla P40) - 8856 MiB free
llama_load_model_from_file: using device CUDA1 (Tesla P40) - 8460 MiB free
llama_load_model_from_file: using device CUDA2 (Tesla P40) - 8090 MiB free
llama_model_loader: loaded meta data with 30 key-value pairs and 147 tensors from /home/ultimis/LLM/Models/hugging-quants/Llama-3.2-1B-Instruct-Q8_0-GGUF/llama-3.2-1b-instruct-q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Llama 3.2 1B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Llama-3.2
llama_model_loader: - kv 5: general.size_label str = 1B
llama_model_loader: - kv 6: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 7: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv 8: llama.block_count u32 = 16
llama_model_loader: - kv 9: llama.context_length u32 = 131072
llama_model_loader: - kv 10: llama.embedding_length u32 = 2048
llama_model_loader: - kv 11: llama.feed_forward_length u32 = 8192
llama_model_loader: - kv 12: llama.attention.head_count u32 = 32
llama_model_loader: - kv 13: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 14: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 15: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 16: llama.attention.key_length u32 = 64
llama_model_loader: - kv 17: llama.attention.value_length u32 = 64
llama_model_loader: - kv 18: general.file_type u32 = 7
llama_model_loader: - kv 19: llama.vocab_size u32 = 128256
llama_model_loader: - kv 20: llama.rope.dimension_count u32 = 64
llama_model_loader: - kv 21: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 22: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 23: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 24: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 25: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 28: tokenizer.chat_template str = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv 29: general.quantization_version u32 = 2
llama_model_loader: - type f32: 34 tensors
llama_model_loader: - type q8_0: 113 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 131072
llm_load_print_meta: n_embd = 2048
llm_load_print_meta: n_layer = 16
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 64
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 64
llm_load_print_meta: n_embd_head_v = 64
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 512
llm_load_print_meta: n_embd_v_gqa = 512
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 8192
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 131072
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 1B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 1.24 B
llm_load_print_meta: model size = 1.22 GiB (8.50 BPW)
llm_load_print_meta: general.name = Llama 3.2 1B Instruct
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token = 128008 '<|eom_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOG token = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 16 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 17/17 layers to GPU
llm_load_tensors: CPU_Mapped model buffer size = 266.16 MiB
llm_load_tensors: CUDA0 model buffer size = 0.09 MiB
llm_load_tensors: CUDA1 model buffer size = 0.09 MiB
llm_load_tensors: CUDA2 model buffer size = 0.07 MiB
llm_load_tensors: CUDA0_Split model buffer size = 369.75 MiB
llm_load_tensors: CUDA1_Split model buffer size = 369.75 MiB
llm_load_tensors: CUDA2_Split model buffer size = 512.66 MiB
..............................................................
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 8000
llama_new_context_with_model: n_ctx_per_seq = 8000
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: n_ctx_per_seq (8000) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: CUDA0 KV buffer size = 93.75 MiB
llama_kv_cache_init: CUDA1 KV buffer size = 93.75 MiB
llama_kv_cache_init: CUDA2 KV buffer size = 62.50 MiB
llama_new_context_with_model: KV self size = 250.00 MiB, K (f16): 125.00 MiB, V (f16): 125.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.49 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 531.63 MiB
llama_new_context_with_model: CUDA1 compute buffer size = 531.63 MiB
llama_new_context_with_model: CUDA2 compute buffer size = 531.63 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 19.63 MiB
llama_new_context_with_model: graph nodes = 518
llama_new_context_with_model: graph splits = 4
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
<|begin_of_text|>// Quick-sort implementation in C (4 spaces indentation + detailed comments) and sample usage.
Segmentation fault (core dumped)