Skip to content

Added Water Bottles Solution #575

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 5, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
315 changes: 315 additions & 0 deletions dsa-solutions/lc-solutions/1500-1599/1518-Water-Bottles.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,315 @@
---

id: water-bottles
title: Water Bottles Solution
sidebar_label: 1518-Water-Bottles
tags:
- Greedy
- Simulation
- LeetCode
- Python
- Java
- C++
- JavaScript
description: "This is a solution to the Water Bottles problem on LeetCode."

---

In this page, we will solve the Water Bottles problem using different approaches: iterative simulation and a more optimized approach. We will provide the implementation of the solution in Python, Java, C++, JavaScript, and more.

## Problem Description

There are `numBottles` water bottles that are initially full of water. You can exchange `numExchange` empty water bottles from the market with one full water bottle.

The operation of drinking a full water bottle turns it into an empty bottle.

Given the two integers `numBottles` and `numExchange`, return the maximum number of water bottles you can drink.

### Examples

**Example 1:**

```plaintext
Input: numBottles = 9, numExchange = 3
Output: 13
Explanation: You can exchange 3 empty bottles to get 1 full water bottle.
Number of water bottles you can drink: 9 + 3 + 1 = 13.
```

**Example 2:**

```plaintext
Input: numBottles = 15, numExchange = 4
Output: 19
Explanation: You can exchange 4 empty bottles to get 1 full water bottle.
Number of water bottles you can drink: 15 + 3 + 1 = 19.
```

### Constraints

- $1 <= numBottles <= 100$
- $2 <= numExchange <= 100$

---

## Solution for Water Bottles Problem

### Intuition and Approach

The problem can be solved by simulating the process of drinking water bottles and exchanging empty ones for full ones until no more exchanges can be made.

<Tabs>
<tabItem value="Iterative Simulation" label="Iterative Simulation">

### Approach 1: Iterative Simulation

We iteratively drink the water bottles and exchange the empty ones until no more exchanges are possible.

#### Implementation

```jsx live
function maxBottles() {
const numBottles = 9;
const numExchange = 3;

const maxWaterBottles = function(numBottles, numExchange) {
let totalDrank = numBottles;
let emptyBottles = numBottles;

while (emptyBottles >= numExchange) {
const newBottles = Math.floor(emptyBottles / numExchange);
totalDrank += newBottles;
emptyBottles = emptyBottles % numExchange + newBottles;
}

return totalDrank;
};

const result = maxWaterBottles(numBottles, numExchange);
return (
<div>
<p>
<b>Input:</b> numBottles = {numBottles}, numExchange = {numExchange}
</p>
<p>
<b>Output:</b> {result}
</p>
</div>
);
}
```

#### Code in Different Languages

<Tabs>
<TabItem value="JavaScript" label="JavaScript" default>
<SolutionAuthor name="@manishh12"/>
```javascript
function maxWaterBottles(numBottles, numExchange) {
let totalDrank = numBottles;
let emptyBottles = numBottles;

while (emptyBottles >= numExchange) {
const newBottles = Math.floor(emptyBottles / numExchange);
totalDrank += newBottles;
emptyBottles = emptyBottles % numExchange + newBottles;
}

return totalDrank;
}
```

</TabItem>
<TabItem value="TypeScript" label="TypeScript">
<SolutionAuthor name="@manishh12"/>
```typescript
function maxWaterBottles(numBottles: number, numExchange: number): number {
let totalDrank: number = numBottles;
let emptyBottles: number = numBottles;

while (emptyBottles >= numExchange) {
const newBottles: number = Math.floor(emptyBottles / numExchange);
totalDrank += newBottles;
emptyBottles = emptyBottles % numExchange + newBottles;
}

return totalDrank;
}
```

</TabItem>
<TabItem value="Python" label="Python">
<SolutionAuthor name="@manishh12"/>
```python
class Solution:
def numWaterBottles(self, numBottles: int, numExchange: int) -> int:
total_drank = numBottles
empty_bottles = numBottles

while empty_bottles >= numExchange:
new_bottles = empty_bottles // numExchange
total_drank += new_bottles
empty_bottles = empty_bottles % numExchange + new_bottles

return total_drank
```

</TabItem>
<TabItem value="Java" label="Java">
<SolutionAuthor name="@manishh12"/>
```java
class Solution {
public int numWaterBottles(int numBottles, int numExchange) {
int totalDrank = numBottles;
int emptyBottles = numBottles;

while (emptyBottles >= numExchange) {
int newBottles = emptyBottles / numExchange;
totalDrank += newBottles;
emptyBottles = emptyBottles % numExchange + newBottles;
}

return totalDrank;
}
}
```

</TabItem>
<TabItem value="C++" label="C++">
<SolutionAuthor name="@manishh12"/>
```cpp
class Solution {
public:
int numWaterBottles(int numBottles, int numExchange) {
int totalDrank = numBottles;
int emptyBottles = numBottles;

while (emptyBottles >= numExchange) {
int newBottles = emptyBottles / numExchange;
totalDrank += newBottles;
emptyBottles = emptyBottles % numExchange + newBottles;
}

return totalDrank;
}
};
```

</TabItem>
</Tabs>

#### Complexity Analysis

- Time Complexity: $$O(\log n)$$, where `n` is the initial number of bottles, due to the iterative division.
- Space Complexity: $$O(1)$$, as we are using a constant amount of extra space.

</tabItem>

<tabItem value="Optimized Approach" label="Optimized Approach">

### Approach 2: Optimized Approach

We can derive a mathematical formula to calculate the total number of water bottles drank based on the initial number of bottles and the exchange rate.

#### Implementation

```jsx live
function maxBottles() {
const numBottles = 9;
const numExchange = 3;

const maxWaterBottles = function(numBottles, numExchange) {
return numBottles + Math.floor((numBottles - 1) / (numExchange - 1));
};

const result = maxWaterBottles(numBottles, numExchange);
return (
<div>
<p>
<b>Input:</b> numBottles = {numBottles}, numExchange = {numExchange}
</p>
<p>
<b>Output:</b> {result}
</p>
</div>
);
}
```

#### Code in Different Languages

<Tabs>
<TabItem value="JavaScript" label="JavaScript" default>
<SolutionAuthor name="@manishh12"/>
```javascript
function maxWaterBottles(numBottles, numExchange) {
return numBottles + Math.floor((numBottles - 1) / (numExchange - 1));
}
```

</TabItem>
<TabItem value="TypeScript" label="TypeScript">
<SolutionAuthor name="@manishh12"/>
```typescript
function maxWaterBottles(numBottles: number, numExchange: number): number {
return numBottles + Math.floor((numBottles - 1) / (numExchange - 1));
}
```

</TabItem>
<TabItem value="Python" label="Python">
<SolutionAuthor name="@manishh12"/>
```python
class Solution:
def numWaterBottles(self, numBottles: int, numExchange: int) -> int:
return numBottles + (numBottles - 1) // (numExchange - 1)
```

</TabItem>
<TabItem value="Java" label="Java">
<SolutionAuthor name="@manishh12"/>
```java
class Solution {
public int numWaterBottles(int numBottles, int numExchange) {
return numBottles + (num

Bottles - 1) / (numExchange - 1);
}
}
```

</TabItem>
<TabItem value="C++" label="C++">
<SolutionAuthor name="@manishh12"/>
```cpp
class Solution {
public:
int numWaterBottles(int numBottles, int numExchange) {
return numBottles + (numBottles - 1) / (numExchange - 1);
}
};
```

</TabItem>
</Tabs>

#### Complexity Analysis

- Time Complexity: $$O(1)$$, as we directly calculate the result using a formula.
- Space Complexity: $$O(1)$$, as we are using a constant amount of extra space.

</tabItem>
</Tabs>

:::tip Note

By using both iterative simulation and an optimized mathematical approach, we can efficiently solve the Water Bottles problem. The choice between the two approaches depends on the specific requirements and constraints of the problem.

:::

## References

- **LeetCode Problem:** [Water Bottles](https://leetcode.com/problems/water-bottles/)
- **Solution Link:** [Water Bottles Solution on LeetCode](https://leetcode.com/problems/water-bottles/solution/)
- **Authors LeetCode Profile:** [Manish Kumar Gupta](https://leetcode.com/_manishh12/)

Loading