|
| 1 | +--- |
| 2 | +id: number-of-subarrays-that-match-a-pattern-i |
| 3 | +title: Number of Subarrays That Match a Pattern I (LeetCode) |
| 4 | +sidebar_label: 3034-NumberOfSubarraysThatMatchAPatternI |
| 5 | +tags: |
| 6 | + - Array |
| 7 | + - Pattern |
| 8 | + - Sliding Window |
| 9 | +description: Count the number of subarrays in an integer array that match a given pattern. |
| 10 | +sidebar_position: 3034 |
| 11 | +--- |
| 12 | + |
| 13 | +## Problem Description |
| 14 | + |
| 15 | +| Problem Statement | Solution Link | LeetCode Profile | |
| 16 | +| :---------------- | :------------ | :--------------- | |
| 17 | +| [Number of Subarrays That Match a Pattern I](https://leetcode.com/problems/number-of-subarrays-that-match-a-pattern-i/) | [Number of Subarrays That Match a Pattern I Solution on LeetCode](https://leetcode.com/problems/number-of-subarrays-that-match-a-pattern-i/solutions/) | [vaishu_1904](https://leetcode.com/u/vaishu_1904/) | |
| 18 | + |
| 19 | +## Problem Description |
| 20 | + |
| 21 | +You are given a 0-indexed integer array nums of size n, and a 0-indexed integer array pattern of size m consisting of integers -1, 0, and 1. |
| 22 | + |
| 23 | +A subarray nums[i..j] of size m + 1 is said to match the pattern if the following conditions hold for each element pattern[k]: |
| 24 | + |
| 25 | +- `nums[i + k + 1] > nums[i + k]` if `pattern[k] == 1`. |
| 26 | +- `nums[i + k + 1] == nums[i + k]` if `pattern[k] == 0`. |
| 27 | +- `nums[i + k + 1] < nums[i + k]` if `pattern[k] == -1`. |
| 28 | + |
| 29 | +Return the count of subarrays in nums that match the pattern. |
| 30 | + |
| 31 | +### Example 1 |
| 32 | + |
| 33 | +- **Input:** `nums = [1,2,3,4,5,6]`, `pattern = [1,1]` |
| 34 | +- **Output:** `4` |
| 35 | +- **Explanation:** The pattern `[1,1]` indicates that we are looking for strictly increasing subarrays of size 3. In the array `nums`, the subarrays `[1,2,3]`, `[2,3,4]`, `[3,4,5]`, and `[4,5,6]` match this pattern. |
| 36 | + Hence, there are 4 subarrays in `nums` that match the pattern. |
| 37 | + |
| 38 | +### Example 2 |
| 39 | + |
| 40 | +- **Input:** `nums = [1,4,4,1,3,5,5,3]`, `pattern = [1,0,-1]` |
| 41 | +- **Output:** `2` |
| 42 | +- **Explanation:** Here, the pattern `[1,0,-1]` indicates that we are looking for a sequence where the first number is smaller than the second, the second is equal to the third, and the third is greater than the fourth. In the array `nums`, the subarrays `[1,4,4,1]`, and `[3,5,5,3]` match this pattern. |
| 43 | + Hence, there are 2 subarrays in `nums` that match the pattern. |
| 44 | + |
| 45 | +### Constraints |
| 46 | + |
| 47 | +- `2 <= n == nums.length <= 100` |
| 48 | +- `1 <= nums[i] <= 10^9` |
| 49 | +- `1 <= m == pattern.length < n` |
| 50 | +- `-1 <= pattern[i] <= 1` |
| 51 | + |
| 52 | +## Approach |
| 53 | + |
| 54 | +To solve this problem, we can use a sliding window approach to efficiently count the number of subarrays that match the given pattern. Here's the approach: |
| 55 | + |
| 56 | +1. Iterate through the array with a sliding window of size `m+1`. |
| 57 | +2. For each window, check if the subarray matches the pattern. |
| 58 | +3. Increment the count if the subarray matches the pattern. |
| 59 | + |
| 60 | +### Solution Code |
| 61 | + |
| 62 | +#### Python |
| 63 | + |
| 64 | +```python |
| 65 | +class Solution: |
| 66 | + def countMatchingSubarrays(self, nums: List[int], pattern: List[int]) -> int: |
| 67 | + n, m = len(nums), len(pattern) |
| 68 | + count = 0 |
| 69 | + |
| 70 | + for i in range(n - m): |
| 71 | + match = True |
| 72 | + for k in range(m): |
| 73 | + if (pattern[k] == 1 and nums[i + k + 1] <= nums[i + k]) or \ |
| 74 | + (pattern[k] == 0 and nums[i + k + 1] != nums[i + k]) or \ |
| 75 | + (pattern[k] == -1 and nums[i + k + 1] >= nums[i + k]): |
| 76 | + match = False |
| 77 | + break |
| 78 | + if match: |
| 79 | + count += 1 |
| 80 | + |
| 81 | + return count |
| 82 | +``` |
| 83 | + |
| 84 | +#### C++ |
| 85 | + |
| 86 | +```c++ |
| 87 | +#include <vector> |
| 88 | +using namespace std; |
| 89 | + |
| 90 | +class Solution { |
| 91 | +public: |
| 92 | + int countMatchingSubarrays(vector<int>& nums, vector<int>& pattern) { |
| 93 | + int n = nums.size(), m = pattern.size(); |
| 94 | + int count = 0; |
| 95 | + |
| 96 | + for (int i = 0; i <= n - m - 1; ++i) { |
| 97 | + bool match = true; |
| 98 | + for (int k = 0; k < m; ++k) { |
| 99 | + if ((pattern[k] == 1 && nums[i + k + 1] <= nums[i + k]) || |
| 100 | + (pattern[k] == 0 && nums[i + k + 1] != nums[i + k]) || |
| 101 | + (pattern[k] == -1 && nums[i + k + 1] >= nums[i + k])) { |
| 102 | + match = false; |
| 103 | + break; |
| 104 | + } |
| 105 | + } |
| 106 | + if (match) { |
| 107 | + count++; |
| 108 | + } |
| 109 | + } |
| 110 | + |
| 111 | + return count; |
| 112 | + } |
| 113 | +}; |
| 114 | +``` |
| 115 | +
|
| 116 | +#### Java |
| 117 | +
|
| 118 | +```java |
| 119 | +class Solution { |
| 120 | + public int countMatchingSubarrays(int[] nums, int[] pattern) { |
| 121 | + int n = nums.length, m = pattern.length; |
| 122 | + int count = 0; |
| 123 | + |
| 124 | + for (int i = 0; i <= n - m - 1; ++i) { |
| 125 | + boolean match = true; |
| 126 | + for (int k = 0; k < m; ++k) { |
| 127 | + if ((pattern[k] == 1 && nums[i + k + 1] <= nums[i + k]) || |
| 128 | + (pattern[k] == 0 && nums[i + k + 1] != nums[i + k]) || |
| 129 | + (pattern[k] == -1 && nums[i + k + 1] >= nums[i + k])) { |
| 130 | + match = false; |
| 131 | + break; |
| 132 | + } |
| 133 | + } |
| 134 | + if (match) { |
| 135 | + count++; |
| 136 | + } |
| 137 | + } |
| 138 | + |
| 139 | + return count; |
| 140 | + } |
| 141 | +} |
| 142 | +``` |
| 143 | + |
| 144 | +### Conclusion |
| 145 | +The solutions use a sliding window approach to efficiently count the number of subarrays that match |
| 146 | +the given pattern. This ensures an efficient and straightforward way to solve the problem across |
| 147 | +different programming languages. |
0 commit comments