|
| 1 | +--- |
| 2 | +id: search-in-a-binary-search-tree |
| 3 | +title: Search in a Binary Search Tree |
| 4 | +sidebar_label: 700. Search in a Binary Search Tree |
| 5 | + |
| 6 | +tags: |
| 7 | +- Binary Tree |
| 8 | +- BST |
| 9 | +- Search |
| 10 | + |
| 11 | +description: "This is a solution to the Search in a Binary Search Tree problem on LeetCode." |
| 12 | +--- |
| 13 | + |
| 14 | +## Problem Description |
| 15 | +You are given the `root` of a binary search tree (BST) and an integer `val`. |
| 16 | +Find the node in the BST that the node's value equals `val` and return the subtree rooted with that node. If such a node does not exist, return `null`. |
| 17 | +### Examples |
| 18 | + |
| 19 | +**Example 1:** |
| 20 | + |
| 21 | + |
| 22 | +``` |
| 23 | +Input: root = [4,2,7,1,3], val = 2 |
| 24 | +Output: [2,1,3] |
| 25 | +``` |
| 26 | + |
| 27 | +**Example 2:** |
| 28 | + |
| 29 | + |
| 30 | +``` |
| 31 | +Input: root = [4,2,7,1,3], val = 5 |
| 32 | +Output: [] |
| 33 | +
|
| 34 | +``` |
| 35 | + |
| 36 | + |
| 37 | +### Constraints |
| 38 | +- The number of nodes in the tree is in the range `[1, 5000]`. |
| 39 | +- `1 <= Node.val <= 10^7` |
| 40 | +- `root` is a binary search tree. |
| 41 | +- `1 <= val <= 10^7` |
| 42 | + |
| 43 | + |
| 44 | + |
| 45 | +## Solution for Search in a Binary Search Tree |
| 46 | +### Approach |
| 47 | +#### Brute Force |
| 48 | +- **Traverse the Tree**: Perform a level-order or in-order traversal of the tree. |
| 49 | +- **Compare Values**: At each node, compare its value with the given value `val`. |
| 50 | +- **Return Subtree**: If the node’s value equals `val`, return the subtree rooted at that node. |
| 51 | +- **Return Null**: If the traversal completes without finding the node, return `null`. |
| 52 | + |
| 53 | +**Implementation:** |
| 54 | +```python |
| 55 | +class TreeNode: |
| 56 | + def __init__(self, val=0, left=None, right=None): |
| 57 | + self.val = val |
| 58 | + self.left = left |
| 59 | + self.right = right |
| 60 | + |
| 61 | +def findNode(root, val): |
| 62 | + if root is None: |
| 63 | + return None |
| 64 | + |
| 65 | + queue = [root] |
| 66 | + while queue: |
| 67 | + node = queue.pop(0) |
| 68 | + if node.val == val: |
| 69 | + return node |
| 70 | + if node.left: |
| 71 | + queue.append(node.left) |
| 72 | + if node.right: |
| 73 | + queue.append(node.right) |
| 74 | + |
| 75 | + return None |
| 76 | + |
| 77 | +# Example usage |
| 78 | +root = TreeNode(4, TreeNode(2, TreeNode(1), TreeNode(3)), TreeNode(7)) |
| 79 | +val = 2 |
| 80 | +subtree = findNode(root, val) |
| 81 | +print(subtree.val if subtree else "Node not found") |
| 82 | +``` |
| 83 | + |
| 84 | +**Complexity:** |
| 85 | +- Time Complexity: `O(n)` - We might have to visit every node in the tree. |
| 86 | +- Space Complexity: `O(n)` - In the worst case, the queue can hold all nodes in the tree (for level-order traversal). |
| 87 | + |
| 88 | +**Corner Cases:** |
| 89 | +- Empty tree: Should return `null`. |
| 90 | +- Value not found: Should return `null`. |
| 91 | + |
| 92 | +#### Optimized Approach |
| 93 | +- **Leverage BST Properties**: Use the properties of the BST (left subtree contains nodes with values less than the root, and the right subtree contains nodes with values greater than the root). |
| 94 | +- **Binary Search**: Traverse the tree using a binary search-like approach: |
| 95 | + - If `val` is less than the current node’s value, move to the left child. |
| 96 | + - If `val` is greater than the current node’s value, move to the right child. |
| 97 | + - If `val` equals the current node’s value, return the current node. |
| 98 | +- **Return Null**: If a leaf node is reached without finding the value, return `null`. |
| 99 | + |
| 100 | +**Implementation:** |
| 101 | + |
| 102 | +```python |
| 103 | +class TreeNode: |
| 104 | + def __init__(self, val=0, left=None, right=None): |
| 105 | + self.val = val |
| 106 | + self.left = left |
| 107 | + self.right = right |
| 108 | + |
| 109 | +def findNode(root, val): |
| 110 | + current = root |
| 111 | + while current: |
| 112 | + if current.val == val: |
| 113 | + return current |
| 114 | + elif val < current.val: |
| 115 | + current = current.left |
| 116 | + else: |
| 117 | + current = current.right |
| 118 | + return None |
| 119 | + |
| 120 | +# Example usage |
| 121 | +root = TreeNode(4, TreeNode(2, TreeNode(1), TreeNode(3)), TreeNode(7)) |
| 122 | +val = 2 |
| 123 | +subtree = findNode(root, val) |
| 124 | +print(subtree.val if subtree else "Node not found") |
| 125 | +``` |
| 126 | + |
| 127 | +**Complexity:** |
| 128 | +- Time Complexity: `O(h)`- `h` is the height of the tree. In the worst case, it can be O(n) for a skewed tree, but in a balanced tree, it is O(log n). |
| 129 | +- Space Complexity: `O(1)`- We are not using any extra space except for the input and output. |
| 130 | + |
| 131 | +**Corner Cases:** |
| 132 | +- Empty tree: Should return `null`. |
| 133 | +- Value not found: Should return `null`. |
| 134 | +- Single node tree: If the single node does not match `val`, should return `null`. |
| 135 | + |
| 136 | + |
| 137 | + ## Code in Different Languages |
| 138 | + |
| 139 | + <Tabs> |
| 140 | + |
| 141 | + <TabItem value="JavaScript" label="JavaScript"> |
| 142 | + <SolutionAuthor name="@vansh-codes" /> |
| 143 | + |
| 144 | + ```javascript |
| 145 | + var searchBST = function(root, val) { |
| 146 | + if (root === null) { |
| 147 | + return null; |
| 148 | + } else { |
| 149 | + if (root.val === val) { |
| 150 | + return root; |
| 151 | + } else if (root.val < val) { |
| 152 | + return searchBST(root.right, val); |
| 153 | + } else { |
| 154 | + return searchBST(root.left, val); |
| 155 | + } |
| 156 | + } |
| 157 | + }; |
| 158 | + ``` |
| 159 | + |
| 160 | + </TabItem> |
| 161 | + |
| 162 | + <TabItem value="TypeScript" label="TypeScript"> |
| 163 | + <SolutionAuthor name="@vansh-codes" /> |
| 164 | + |
| 165 | + ```typescript |
| 166 | + function searchBST(root: TreeNode | null, val: number): TreeNode | null { |
| 167 | + if (root === null) { |
| 168 | + return null; |
| 169 | + } else { |
| 170 | + if (root.val === val) { |
| 171 | + return root; |
| 172 | + } else if (root.val < val) { |
| 173 | + return searchBST(root.right, val); |
| 174 | + } else { |
| 175 | + return searchBST(root.left, val); |
| 176 | + } |
| 177 | + } |
| 178 | + } |
| 179 | + ``` |
| 180 | + |
| 181 | + </TabItem> |
| 182 | + |
| 183 | + <TabItem value="Python" label="Python"> |
| 184 | + <SolutionAuthor name="@vansh-codes" /> |
| 185 | + |
| 186 | + ```python |
| 187 | +
|
| 188 | + class Solution(object): |
| 189 | + def searchBST(self, root, val): |
| 190 | + if root is None: |
| 191 | + return None |
| 192 | + else: |
| 193 | + if root.val == val: |
| 194 | + return root |
| 195 | + elif root.val < val: |
| 196 | + return self.searchBST(root.right, val) |
| 197 | + else: |
| 198 | + return self.searchBST(root.left, val) |
| 199 | + ``` |
| 200 | + |
| 201 | + </TabItem> |
| 202 | + |
| 203 | + <TabItem value="Java" label="Java"> |
| 204 | + <SolutionAuthor name="@vansh-codes" /> |
| 205 | + |
| 206 | + ```java |
| 207 | + import java.util.Arrays; |
| 208 | +
|
| 209 | + class Solution { |
| 210 | + public TreeNode searchBST(TreeNode root, int val) { |
| 211 | + if (root == null) { |
| 212 | + return null; |
| 213 | + } else { |
| 214 | + if (root.val == val) { |
| 215 | + return root; |
| 216 | + } else if (root.val < val) { |
| 217 | + return searchBST(root.right, val); |
| 218 | + } else { |
| 219 | + return searchBST(root.left, val); |
| 220 | + } |
| 221 | + } |
| 222 | + } |
| 223 | + } |
| 224 | + ``` |
| 225 | + |
| 226 | + </TabItem> |
| 227 | + |
| 228 | + <TabItem value="C++" label="C++"> |
| 229 | + <SolutionAuthor name="@vansh-codes" /> |
| 230 | + |
| 231 | + ```cpp |
| 232 | + class Solution { |
| 233 | + public: |
| 234 | + TreeNode* searchBST(TreeNode* root, int val) { |
| 235 | + if(root==NULL){ |
| 236 | + return NULL; |
| 237 | + } |
| 238 | + else{ |
| 239 | + if(root->val == val){ |
| 240 | + return root; |
| 241 | + }else if(root->val < val){ |
| 242 | + return searchBST(root->right,val); |
| 243 | + }else{ |
| 244 | + return searchBST(root->left,val); |
| 245 | + } |
| 246 | + return NULL; |
| 247 | + } |
| 248 | + return NULL; |
| 249 | + } |
| 250 | + }; |
| 251 | + ``` |
| 252 | + |
| 253 | + </TabItem> |
| 254 | + </Tabs> |
| 255 | + |
| 256 | +## References |
| 257 | + |
| 258 | +- **LeetCode Problem**: [Search in a Binary Search Tree](https://leetcode.com/problems/search-in-a-binary-search-tree/description) |
| 259 | + |
| 260 | +- **Solution Link**: [LeetCode Solution](https://leetcode.com/problems/search-in-a-binary-search-tree/solutions) |
0 commit comments