Skip to content

benjamindannegard/nicla-voice-tutorial-fix #904

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 10, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -95,8 +95,6 @@ Make sure to have a good training/test data split ratio of around 80/20. The tes

Now that we acquired the data samples, we can move on to designing the Impulse. In a nutshell, an Impulse is a pipeline that the model will use for training and it consists of an input block, a processing block and a learning block. The input block indicates the type of data being used in the model, which will be audio in this case. The processing block extracts meaningful features from your data. The Audio Syntiant processing block we are using in this tutorial extracts time and frequency features from the audio used in the model. The learning block uses a neural network classifier that will take the input data and the audio that was captured in the previous step and provides a probability that indicates how likely it is that the input data belongs to a particular class as its output.

Now that we have the data samples, we can move on to designing the Impulse. An Impulse is in a nutshell the pipeline that the model will use for training. Consisting of an input block, processing block and a learning block. The input block indicates the type of data being used in the model, which will be audio in this case. The processing block extracts meaningful features from your data. The Audio Syntiant processing block we are using in this tutorial extracts time and frequency features from the audio used in the model. The learning block uses a neural network classifier that will take the input data, the audio that was captured in the previous step, and then give us a probability that indicates how likely it is that the input data belongs to a particular class.

In the menu navigate to "Create Impulse" under "Impulse Design" and add an Audio processing block, which will be "Syntiant" in this case, as well as a Classification block. The page should now look like the image below.

![Impulse design page](assets/impulse-design-page.svg)
Expand Down