Skip to content

Add split-operator method in Python #332

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 5, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
127 changes: 127 additions & 0 deletions contents/split-operator_method/code/python/split_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
# pylint: disable=invalid-name
# pylint: disable=too-many-instance-attributes
# pylint: disable=too-few-public-methods
# pylint: disable=too-many-arguments
from math import pi
from math import sqrt

import numpy as np


class Param:
"""Container for holding all simulation parameters."""
def __init__(self,
xmax: float,
res: int,
dt: float,
timesteps: int,
im_time: bool) -> None:

self.xmax = xmax
self.res = res
self.dt = dt
self.timesteps = timesteps
self.im_time = im_time

self.dx = 2 * xmax / res
self.x = np.arange(-xmax + xmax / res, xmax, self.dx)
self.dk = pi / xmax
self.k = np.concatenate((np.arange(0, res / 2),
np.arange(-res / 2, 0))) * self.dk


class Operators:
"""Container for holding operators and wavefunction coefficients."""
def __init__(self, res: int) -> None:

self.V = np.empty(res, dtype=complex)
self.R = np.empty(res, dtype=complex)
self.K = np.empty(res, dtype=complex)
self.wfc = np.empty(res, dtype=complex)


def init(par: Param, voffset: float, wfcoffset: float) -> Operators:
"""Initialize the wavefunction coefficients and the potential."""
opr = Operators(len(par.x))
opr.V = 0.5 * (par.x - voffset) ** 2
opr.wfc = np.exp(-((par.x - wfcoffset) ** 2) / 2, dtype=complex)
if par.im_time:
opr.K = np.exp(-0.5 * (par.k ** 2) * par.dt)
opr.R = np.exp(-0.5 * opr.V * par.dt)
else:
opr.K = np.exp(-0.5 * (par.k ** 2) * par.dt * 1j)
opr.R = np.exp(-0.5 * opr.V * par.dt * 1j)
return opr


def split_op(par: Param, opr: Operators) -> None:

for i in range(par.timesteps):

# Half-step in real space
opr.wfc *= opr.R

# FFT to momentum space
opr.wfc = np.fft.fft(opr.wfc)

# Full step in momentum space
opr.wfc *= opr.K

# iFFT back
opr.wfc = np.fft.ifft(opr.wfc)

# Final half-step in real space
opr.wfc *= opr.R

# Density for plotting and potential
density = np.abs(opr.wfc) ** 2

# Renormalizing for imaginary time
if par.im_time:
renorm_factor = sum(density) * par.dx
opr.wfc /= sqrt(renorm_factor)

# Outputting data to file. Plotting can also be done in a
# similar way. This is set to output exactly 100 files, no
# matter how many timesteps were specified.
if i % (par.timesteps // 100) == 0:
filename = "output{}.dat".format(str(i).rjust(5, str(0)))
with open(filename, "w") as outfile:
# Outputting for gnuplot. Any plotter will do.
for j in range(len(density)):
template = "{}\t{}\t{}\n".format
line = template(par.x[j], density[j].real, opr.V[j].real)
outfile.write(line)
print("Outputting step: ", i + 1)


def calculate_energy(par: Param, opr: Operators) -> float:
"""Calculate the energy <Psi|H|Psi>."""
# Creating real, momentum, and conjugate wavefunctions.
wfc_r = opr.wfc
wfc_k = np.fft.fft(wfc_r)
wfc_c = np.conj(wfc_r)

# Finding the momentum and real-space energy terms
energy_k = 0.5 * wfc_c * np.fft.ifft((par.k ** 2) * wfc_k)
energy_r = wfc_c * opr.V * wfc_r

# Integrating over all space
energy_final = sum(energy_k + energy_r).real

return energy_final * par.dx


def main() -> None:
par = Param(5.0, 256, 0.05, 100, True)

# Starting wavefunction slightly offset so we can see it change
opr = init(par, 0.0, -1.00)
split_op(par, opr)

energy = calculate_energy(par, opr)
print("Energy is: ", energy)


if __name__ == "__main__":
main()
8 changes: 8 additions & 0 deletions contents/split-operator_method/split-operator_method.md
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,8 @@ Regardless, we first need to set all the initial parameters, including the initi
{% method %}
{% sample lang="jl" %}
[import:9-32, lang:"julia"](code/julia/split_op.jl)
{% sample lang="py" %}
[import:11-30, lang:"python"](code/python/split_op.py)
{% endmethod %}

As a note, when we generate our grid in momentum space `k`, we need to split the grid into two lines, one that is going from `0` to `-kmax` and is then discontinuous and goes from `kmax` to `0`.
Expand All @@ -111,6 +113,8 @@ Afterwards, we turn them into operators:
{% method %}
{% sample lang="jl" %}
[import:34-60, lang:"julia"](code/julia/split_op.jl)
{% sample lang="py" %}
[import:33-54, lang:"python"](code/python/split_op.py)
{% endmethod %}

Here, we use a standard harmonic potential for the atoms to sit in and a gaussian distribution for an initial guess for the probability distribution.
Expand All @@ -124,6 +128,8 @@ The final step is to do the iteration, itself.
{% method %}
{% sample lang="jl" %}
[import:63-109, lang:"julia"](code/julia/split_op.jl)
{% sample lang="py" %}
[import:57-95, lang:"python"](code/python/split_op.py)
{% endmethod %}

And that's it.
Expand All @@ -143,6 +149,8 @@ Checking to make sure your code can output the correct energy for a harmonic tra
{% method %}
{% sample lang="jl" %}
[import, lang:"julia"](code/julia/split_op.jl)
{% sample lang="py" %}
[import:5-127, lang:"python"](code/python/split_op.py)
{% endmethod %}

<script>
Expand Down