Skip to content

LinearSolve with PardisoJL() doesn't return the expected result #497

Closed
@MichelJuillard

Description

@MichelJuillard

I encounter a problem using LinearSolve to solve a sparse linear system with PardisoJL():
The test case, test_PardisoJL.jl:

using Pkg
Pkg.activate(; temp=true)
Pkg.add("LinearSolve")
Pkg.add("Pardiso")

using LinearAlgebra
using LinearSolve
using Random
using SparseArrays
import Pardiso

include("A.jl")

A = makeA()
b = ones(size(A, 1))

linprob = LinearProblem(A, b)
x1 = LinearSolve.solve(linprob, PardisoJL())
x2 = A\b

@show norm(x1 - x2)

the result is clearly wrong. Matrix A is a 60x60 SparseMatrixCSC constructed in A.jl:

function makeA()
    n = 60
    colptr = [1, 4, 7, 11, 15, 17, 22, 26, 30, 34, 38, 40, 46, 50, 54, 58, 62, 64, 70, 74, 78, 82, 86, 88, 94, 98, 102, 106, 110, 112, 118, 122, 126, 130, 134, 136, 142, 146, 150, 154, 158, 160, 166, 170, 174, 178, 182, 184, 190, 194, 198, 202, 206, 208, 214, 218, 222, 224, 226, 228, 232]
    rowval = [1, 3, 4, 1, 2, 4, 2, 4, 9, 10, 3, 5, 11, 12, 1, 3, 2, 4, 6, 11, 12, 2, 7, 9, 10, 2, 7, 8, 10, 8, 10, 15, 16, 9, 11, 17, 18, 7, 9, 2, 8, 10, 12, 17, 18, 8, 13, 15, 16, 8, 13, 14, 16, 14, 16, 21, 22, 15, 17, 23, 24, 13, 15, 8, 14, 16, 18, 23, 24, 14, 19, 21, 22, 14, 19, 20, 22, 20, 22, 27, 28, 21, 23, 29, 30, 19, 21, 14, 20, 22, 24, 29, 30, 20, 25, 27, 28, 20, 25, 26, 28, 26, 28, 33, 34, 27, 29, 35, 36, 25, 27, 20, 26, 28, 30, 35, 36, 26, 31, 33, 34, 26, 31, 32, 34, 32, 34, 39, 40, 33, 35, 41, 42, 31, 33, 26, 32, 34, 36, 41, 42, 32, 37, 39, 40, 32, 37, 38, 40, 38, 40, 45, 46, 39, 41, 47, 48, 37, 39, 32, 38, 40, 42, 47, 48, 38, 43, 45, 46, 38, 43, 44, 46, 44, 46, 51, 52, 45, 47, 53, 54, 43, 45, 38, 44, 46, 48, 53, 54, 44, 49, 51, 52, 44, 49, 50, 52, 50, 52, 57, 58, 51, 53, 59, 60, 49, 51, 44, 50, 52, 54, 59, 60, 50, 55, 57, 58, 50, 55, 56, 58, 56, 58, 57, 59, 55, 57, 50, 56, 58, 60]
    nzval = [-0.64, 1.0, -1.0, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -0.03510101010101016, -0.975, -1.0806825309567203, 1.0, -0.95, -0.025, 2.370597639417811, -2.3705976394178108, -11.083604432603583, -0.2770901108150896, 1.0, -0.025, -0.95, -0.3564, -0.64, 1.0, -1.0, 13.792569659442691, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -0.03510101010101016, -0.975, -1.0806825309567203, 1.0, -0.95, -0.025, 2.370597639417811, -2.3705976394178108, 10.698449178570607, -11.083604432603583, -0.2770901108150896, 1.0, -0.025, -0.95, -0.3564, -0.64, 1.0, -1.0, 13.792569659442691, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -0.03510101010101016, -0.975, -1.0806825309567203, 1.0, -0.95, -0.025, 2.370597639417811, -2.3705976394178108, 10.698449178570607, -11.083604432603583, -0.2770901108150896, 1.0, -0.025, -0.95, -0.3564, -0.64, 1.0, -1.0, 13.792569659442691, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -0.03510101010101016, -0.975, -1.0806825309567203, 1.0, -0.95, -0.025, 2.370597639417811, -2.3705976394178108, 10.698449178570607, -11.083604432603583, -0.2770901108150896, 1.0, -0.025, -0.95, -0.3564, -0.64, 1.0, -1.0, 13.792569659442691, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -0.03510101010101016, -0.975, -1.0806825309567203, 1.0, -0.95, -0.025, 2.370597639417811, -2.3705976394178108, 10.698449178570607, -11.083604432603583, -0.2770901108150896, 1.0, -0.025, -0.95, -0.3564, -0.64, 1.0, -1.0, 13.792569659442691, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -0.03510101010101016, -0.975, -1.0806825309567203, 1.0, -0.95, -0.025, 2.370597639417811, -2.3705976394178108, 10.698449178570607, -11.083604432603583, -0.2770901108150896, 1.0, -0.025, -0.95, -0.3564, -0.64, 1.0, -1.0, 13.792569659442691, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -0.03510101010101016, -0.975, -1.0806825309567203, 1.0, -0.95, -0.025, 2.370597639417811, -2.3705976394178108, 10.698449178570607, -11.083604432603583, -0.2770901108150896, 1.0, -0.025, -0.95, -0.3564, -0.64, 1.0, -1.0, 13.792569659442691, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -0.03510101010101016, -0.975, -1.0806825309567203, 1.0, -0.95, -0.025, 2.370597639417811, -2.3705976394178108, 10.698449178570607, -11.083604432603583, -0.2770901108150896, 1.0, -0.025, -0.95, -0.3564, -0.64, 1.0, -1.0, 13.792569659442691, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -0.03510101010101016, -0.975, -1.0806825309567203, 1.0, -0.95, -0.025, 2.370597639417811, -2.3705976394178108, 10.698449178570607, -11.083604432603583, -0.2770901108150896, 1.0, -0.025, -0.95, -0.3564, -0.64, 1.0, -1.0, 13.792569659442691, 0.8606811145510832, -13.792569659442691, 1.0, 0.03475000000000006, 1.0, -1.0806825309567203, 1.0, 2.370597639417811, -2.3705976394178108, 10.698449178570607, -11.083604432603583, -0.2770901108150896, 1.0]
    A = SparseMatrixCSC(n, n, colptr, rowval, nzval)
    return(A)
end

test_pardiso.jl shows that using Pardiso directly works fine:

using Pkg
Pkg.activate(; temp=true)
Pkg.add("MKL")
Pkg.add("Pardiso")

using LinearAlgebra
using MKL
using Random
using SparseArrays
using Pardiso

include("A.jl")

A = makeA()
b = ones(size(A, 1))

ps = MKLPardisoSolver()

x1 = similar(b)
Pardiso.solve!(ps, x1, A, b)

x2 = A\b

@show norm(x1 - x2)

Environment :

  • Output of using Pkg; Pkg.status()
Status `/tmp/jl_MTVh52/Project.toml`
  [7ed4a6bd] LinearSolve v2.29.1
  [46dd5b70] Pardiso v0.5.7
  • Output of using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
Status `/tmp/jl_MTVh52/Manifest.toml`
  [47edcb42] ADTypes v1.0.0
  [7d9f7c33] Accessors v0.1.36
  [79e6a3ab] Adapt v4.0.4
  [4fba245c] ArrayInterface v7.10.0
  [4c555306] ArrayLayouts v1.9.2
  [62783981] BitTwiddlingConvenienceFunctions v0.1.5
  [2a0fbf3d] CPUSummary v0.2.4
  [d360d2e6] ChainRulesCore v1.23.0
  [fb6a15b2] CloseOpenIntervals v0.1.12
  [38540f10] CommonSolve v0.2.4
  [34da2185] Compat v4.14.0
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
  [187b0558] ConstructionBase v1.5.5
  [adafc99b] CpuId v0.3.1
  [9a962f9c] DataAPI v1.16.0
  [e2d170a0] DataValueInterfaces v1.0.0
  [ffbed154] DocStringExtensions v0.9.3
  [4e289a0a] EnumX v1.0.4
  [e2ba6199] ExprTools v0.1.10
  [29a986be] FastLapackInterface v2.0.2
  [1a297f60] FillArrays v1.10.2
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [46192b85] GPUArraysCore v0.1.6
  [3e5b6fbb] HostCPUFeatures v0.1.16
  [615f187c] IfElse v0.1.1
  [3587e190] InverseFunctions v0.1.14
  [82899510] IteratorInterfaceExtensions v1.0.0
  [692b3bcd] JLLWrappers v1.5.0
  [ef3ab10e] KLU v0.6.0
  [ba0b0d4f] Krylov v0.9.5
  [10f19ff3] LayoutPointers v0.1.15
  [5078a376] LazyArrays v1.10.0
  [7ed4a6bd] LinearSolve v2.29.1
  [bdcacae8] LoopVectorization v0.12.169
  [1914dd2f] MacroTools v0.5.13
  [d125e4d3] ManualMemory v0.1.8
  [a3b82374] MatrixFactorizations v2.2.0
  [6fe1bfb0] OffsetArrays v1.14.0
  [bac558e1] OrderedCollections v1.6.3
  [46dd5b70] Pardiso v0.5.7
  [f517fe37] Polyester v0.7.13
  [1d0040c9] PolyesterWeave v0.2.1
  [aea7be01] PrecompileTools v1.2.1
  [21216c6a] Preferences v1.4.3
  [3cdcf5f2] RecipesBase v1.3.4
  [731186ca] RecursiveArrayTools v3.13.0
  [f2c3362d] RecursiveFactorization v0.2.23
  [189a3867] Reexport v1.2.2
  [ae029012] Requires v1.3.0
  [7e49a35a] RuntimeGeneratedFunctions v0.5.13
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.42
  [0bca4576] SciMLBase v2.35.0
  [c0aeaf25] SciMLOperators v0.3.8
  [53ae85a6] SciMLStructures v1.1.0
  [efcf1570] Setfield v1.1.1
  [e56a9233] Sparspak v0.3.9
  [aedffcd0] Static v0.8.10
  [0d7ed370] StaticArrayInterface v1.5.0
  [1e83bf80] StaticArraysCore v1.4.2
  [7792a7ef] StrideArraysCore v0.5.6
  [2efcf032] SymbolicIndexingInterface v0.3.16
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.11.1
  [8290d209] ThreadingUtilities v0.5.2
  [d5829a12] TriangularSolve v0.2.0
  [3a884ed6] UnPack v1.0.2
  [3d5dd08c] VectorizationBase v0.21.66
  [1d5cc7b8] IntelOpenMP_jll v2024.1.0+0
  [856f044c] MKL_jll v2024.1.0+0
  [1317d2d5] oneTBB_jll v2021.12.0+0
  [0dad84c5] ArgTools v1.1.1
  [56f22d72] Artifacts
  [2a0f44e3] Base64
  [ade2ca70] Dates
  [8ba89e20] Distributed
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching
  [9fa8497b] Future
  [b77e0a4c] InteractiveUtils
  [4af54fe1] LazyArtifacts
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2
  [8f399da3] Libdl
  [37e2e46d] LinearAlgebra
  [56ddb016] Logging
  [d6f4376e] Markdown
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.10.0
  [de0858da] Printf
  [3fa0cd96] REPL
  [9a3f8284] Random
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization
  [6462fe0b] Sockets
  [2f01184e] SparseArrays v1.10.0
  [10745b16] Statistics v1.10.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test
  [cf7118a7] UUIDs
  [4ec0a83e] Unicode
  [e66e0078] CompilerSupportLibraries_jll v1.1.0+0
  [deac9b47] LibCURL_jll v8.4.0+0
  [e37daf67] LibGit2_jll v1.6.4+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.2+1
  [14a3606d] MozillaCACerts_jll v2023.1.10
  [4536629a] OpenBLAS_jll v0.3.23+4
  [bea87d4a] SuiteSparse_jll v7.2.1+1
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.8.0+1
  [8e850ede] nghttp2_jll v1.52.0+1
  [3f19e933] p7zip_jll v17.4.0+2
  • Output of versioninfo()
Julia Version 1.10.2
Commit bd47eca2c8a (2024-03-01 10:14 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 20 × 13th Gen Intel(R) Core(TM) i7-1370P
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, goldmont)
Threads: 1 default, 0 interactive, 1 GC (on 20 virtual cores)

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions