@@ -13,14 +13,14 @@ kernelspec:
13
13
# The Solow-Swan Growth Model
14
14
15
15
In this lecture we review a famous model due
16
- to [ Robert Solow (1925--2014 )] ( https://en.wikipedia.org/wiki/Robert_Solow ) and [ Trevor Swan (1918--1989)] ( https://en.wikipedia.org/wiki/Trevor_Swan ) .
16
+ to [ Robert Solow (1925--2023 )] ( https://en.wikipedia.org/wiki/Robert_Solow ) and [ Trevor Swan (1918--1989)] ( https://en.wikipedia.org/wiki/Trevor_Swan ) .
17
17
18
18
The model is used to study growth over the long run.
19
19
20
20
Although the model is simple, it contains some interesting lessons.
21
21
22
22
23
- We will use the following imports
23
+ We will use the following imports.
24
24
25
25
``` {code-cell} ipython3
26
26
import matplotlib.pyplot as plt
@@ -59,7 +59,7 @@ Production functions with this property include
59
59
* the ** CES** function $F(K, L) = \left\{ a K^\rho + b L^\rho \right\} ^{1/\rho}$
60
60
with $a, b, \rho > 0$.
61
61
62
- We assume a closed economy, so domestic investment equals aggregate domestic
62
+ We assume a closed economy, so aggregate domestic investment equals aggregate domestic
63
63
saving.
64
64
65
65
The saving rate is a constant $s$ satisfying $0 \leq s \leq 1$, so that aggregate
@@ -121,14 +121,14 @@ x0 = 0.25
121
121
xmin, xmax = 0, 3
122
122
```
123
123
124
- Now, we define the function $g$
124
+ Now, we define the function $g$.
125
125
126
126
``` {code-cell} ipython3
127
127
def g(A, s, alpha, delta, k):
128
128
return A * s * k**alpha + (1 - delta) * k
129
129
```
130
130
131
- Let's plot the 45 degree diagram of $g$
131
+ Let's plot the 45 degree diagram of $g$.
132
132
133
133
``` {code-cell} ipython3
134
134
def plot45(kstar=None):
@@ -198,7 +198,7 @@ If initial capital is below $k^*$, then capital increases over time.
198
198
199
199
If initial capital is above this level, then the reverse is true.
200
200
201
- Let's plot the 45 degree diagram to show the $k^* $ in the plot
201
+ Let's plot the 45 degree diagram to show the $k^* $ in the plot.
202
202
203
203
``` {code-cell} ipython3
204
204
kstar = ((s * A) / delta)**(1/(1 - alpha))
@@ -259,15 +259,15 @@ def simulate_ts(x0_values, ts_length):
259
259
simulate_ts(x0, ts_length)
260
260
```
261
261
262
- As expected, the time paths in the figure both converge to this value .
262
+ As expected, the time paths in the figure all converge to $k^ * $ .
263
263
264
264
## Growth in continuous time
265
265
266
- In this section we investigate a continuous time version of the Solow--Swan
266
+ In this section, we investigate a continuous time version of the Solow--Swan
267
267
growth model.
268
268
269
269
We will see how the smoothing provided by continuous time can
270
- simplify analysis.
270
+ simplify our analysis.
271
271
272
272
273
273
Recall that the discrete time dynamics for capital are
@@ -291,7 +291,7 @@ Taking the time step to zero gives the continuous time limit
291
291
```
292
292
293
293
Our aim is to learn about the evolution of $k_t$ over time,
294
- given initial stock $k_0$.
294
+ given an initial stock $k_0$.
295
295
296
296
A ** steady state** for {eq}` solowc ` is a value $k^* $
297
297
at which capital is unchanging, meaning $k'_ t = 0$ or, equivalently,
@@ -308,7 +308,7 @@ the next figure, maintaining the parameterization we used
308
308
above.
309
309
310
310
Writing $k'_ t = g(k_t)$ with $g(k) =
311
- s Ak^\alpha - \delta k$, values of $k$ with $g(k) > 0$ imply that $k'_ t > 0$, so
311
+ s Ak^\alpha - \delta k$, values of $k$ with $g(k) > 0$ imply $k'_ t > 0$, so
312
312
capital is increasing.
313
313
314
314
When $g(k) < 0$, the opposite occurs. Once again, high marginal returns to
0 commit comments