@@ -385,16 +385,14 @@ We'll make $W_0$ big - positive to indicate a one-time windfall, and negative to
385
385
386
386
```{code-cell} ipython3
387
387
# Windfall W_0 = 2.5
388
- y_seq_pos = np.concatenate(
389
- [np.ones(21), np.array([2.5]), np.ones(44)])
388
+ y_seq_pos = np.concatenate([np.ones(21), np.array([2.5]), np.ones(24), np.zeros(20)])
390
389
391
390
plot_cs(cs_model, a0, y_seq_pos)
392
391
```
393
392
394
393
```{code-cell} ipython3
395
394
# Disaster W_0 = -2.5
396
- y_seq_neg = np.concatenate(
397
- [np.ones(21), np.array([-2.5]), np.ones(44)])
395
+ y_seq_neg = np.concatenate([np.ones(21), np.array([-2.5]), np.ones(24), np.zeros(20)])
398
396
399
397
plot_cs(cs_model, a0, y_seq_neg)
400
398
```
@@ -408,15 +406,15 @@ Again we can study positive and negative cases
408
406
```{code-cell} ipython3
409
407
# Positive permanent income change W = 0.5 when t >= 21
410
408
y_seq_pos = np.concatenate(
411
- [np.ones(21), np.repeat( 1.5, 45 )])
409
+ [np.ones(21), 1.5*np.ones(25), np.zeros(20 )])
412
410
413
411
plot_cs(cs_model, a0, y_seq_pos)
414
412
```
415
413
416
414
```{code-cell} ipython3
417
415
# Negative permanent income change W = -0.5 when t >= 21
418
416
y_seq_neg = np.concatenate(
419
- [np.ones(21), np.repeat(0.5, 45 )])
417
+ [np.ones(21), .5* np.ones(25), np.zeros(20 )])
420
418
421
419
plot_cs(cs_model, a0, y_seq_neg)
422
420
```
0 commit comments