Skip to content

[MRG] Gromov_Wasserstein2 not performing backward properly on GPU #352

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 2, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions RELEASES.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,9 @@
- Fix bug in instantiating an `autograd` function `ValFunction` (Issue #337,
PR #338)
- Fix POT ABI compatibility with old and new numpy (Issue #346, PR #349)
- Fix bug where gromov_wasserstein2 does not perform backpropagation with CUDA
tensors (Issue #351, PR #352)


## 0.8.1.0
*December 2021*
Expand Down
12 changes: 8 additions & 4 deletions ot/gromov.py
Original file line number Diff line number Diff line change
Expand Up @@ -546,8 +546,10 @@ def df(G):
gw = log_gw['gw_dist']

if loss_fun == 'square_loss':
gC1 = nx.from_numpy(2 * C1 * (p[:, None] * p[None, :]) - 2 * T.dot(C2).dot(T.T))
gC2 = nx.from_numpy(2 * C2 * (q[:, None] * q[None, :]) - 2 * T.T.dot(C1).dot(T))
gC1 = 2 * C1 * (p[:, None] * p[None, :]) - 2 * T.dot(C2).dot(T.T)
gC2 = 2 * C2 * (q[:, None] * q[None, :]) - 2 * T.T.dot(C1).dot(T)
gC1 = nx.from_numpy(gC1, type_as=C10)
gC2 = nx.from_numpy(gC2, type_as=C10)
gw = nx.set_gradients(gw, (p0, q0, C10, C20),
(log_gw['u'], log_gw['v'], gC1, gC2))

Expand Down Expand Up @@ -786,8 +788,10 @@ def df(G):
log_fgw['T'] = T0

if loss_fun == 'square_loss':
gC1 = nx.from_numpy(2 * C1 * (p[:, None] * p[None, :]) - 2 * T.dot(C2).dot(T.T))
gC2 = nx.from_numpy(2 * C2 * (q[:, None] * q[None, :]) - 2 * T.T.dot(C1).dot(T))
gC1 = 2 * C1 * (p[:, None] * p[None, :]) - 2 * T.dot(C2).dot(T.T)
gC2 = 2 * C2 * (q[:, None] * q[None, :]) - 2 * T.T.dot(C1).dot(T)
gC1 = nx.from_numpy(gC1, type_as=C10)
gC2 = nx.from_numpy(gC2, type_as=C10)
fgw_dist = nx.set_gradients(fgw_dist, (p0, q0, C10, C20, M0),
(log_fgw['u'], log_fgw['v'], alpha * gC1, alpha * gC2, (1 - alpha) * T0))

Expand Down
60 changes: 35 additions & 25 deletions test/test_gromov.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,19 +181,24 @@ def test_gromov2_gradients():

if torch:

p1 = torch.tensor(p, requires_grad=True)
q1 = torch.tensor(q, requires_grad=True)
C11 = torch.tensor(C1, requires_grad=True)
C12 = torch.tensor(C2, requires_grad=True)
devices = [torch.device("cpu")]
if torch.cuda.is_available():
devices.append(torch.device("cuda"))
for device in devices:
p1 = torch.tensor(p, requires_grad=True, device=device)
q1 = torch.tensor(q, requires_grad=True, device=device)
C11 = torch.tensor(C1, requires_grad=True, device=device)
C12 = torch.tensor(C2, requires_grad=True, device=device)

val = ot.gromov_wasserstein2(C11, C12, p1, q1)
val = ot.gromov_wasserstein2(C11, C12, p1, q1)

val.backward()
val.backward()

assert q1.shape == q1.grad.shape
assert p1.shape == p1.grad.shape
assert C11.shape == C11.grad.shape
assert C12.shape == C12.grad.shape
assert val.device == p1.device
assert q1.shape == q1.grad.shape
assert p1.shape == p1.grad.shape
assert C11.shape == C11.grad.shape
assert C12.shape == C12.grad.shape


@pytest.skip_backend("jax", reason="test very slow with jax backend")
Expand Down Expand Up @@ -636,21 +641,26 @@ def test_fgw2_gradients():

if torch:

p1 = torch.tensor(p, requires_grad=True)
q1 = torch.tensor(q, requires_grad=True)
C11 = torch.tensor(C1, requires_grad=True)
C12 = torch.tensor(C2, requires_grad=True)
M1 = torch.tensor(M, requires_grad=True)

val = ot.fused_gromov_wasserstein2(M1, C11, C12, p1, q1)

val.backward()

assert q1.shape == q1.grad.shape
assert p1.shape == p1.grad.shape
assert C11.shape == C11.grad.shape
assert C12.shape == C12.grad.shape
assert M1.shape == M1.grad.shape
devices = [torch.device("cpu")]
if torch.cuda.is_available():
devices.append(torch.device("cuda"))
for device in devices:
p1 = torch.tensor(p, requires_grad=True, device=device)
q1 = torch.tensor(q, requires_grad=True, device=device)
C11 = torch.tensor(C1, requires_grad=True, device=device)
C12 = torch.tensor(C2, requires_grad=True, device=device)
M1 = torch.tensor(M, requires_grad=True, device=device)

val = ot.fused_gromov_wasserstein2(M1, C11, C12, p1, q1)

val.backward()

assert val.device == p1.device
assert q1.shape == q1.grad.shape
assert p1.shape == p1.grad.shape
assert C11.shape == C11.grad.shape
assert C12.shape == C12.grad.shape
assert M1.shape == M1.grad.shape


def test_fgw_barycenter(nx):
Expand Down