Skip to content

Commit 24c93db

Browse files
committed
[DLMED] add folder structure
Signed-off-by: Nic Ma <nma@nvidia.com>
1 parent 4e1e316 commit 24c93db

File tree

6 files changed

+37
-0
lines changed

6 files changed

+37
-0
lines changed

modules/model_package/spleen_segmentation/commands/export.sh

Whitespace-only changes.

modules/model_package/spleen_segmentation/commands/infer.sh

Whitespace-only changes.

modules/model_package/spleen_segmentation/configs/inference.json

Whitespace-only changes.

modules/model_package/spleen_segmentation/configs/metadata.json

Whitespace-only changes.
Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,31 @@
1+
# Description
2+
A pre-trained model for volumetric (3D) segmentation of the spleen from CT image.
3+
4+
# Model Overview
5+
This model is trained using the runnerup [1] awarded pipeline of the "Medical Segmentation Decathlon Challenge 2018" using the UNet architecture [2] with 32 training images and 9 validation images.
6+
7+
## Data
8+
The training dataset is Task09_Spleen.tar from http://medicaldecathlon.com/.
9+
10+
## Training configuration
11+
The training was performed with command train.sh, which required 12GB-memory GPUs.
12+
13+
Actual Model Input: 96 x 96 x 96
14+
15+
## Input and output formats
16+
Input: 1 channel CT image
17+
18+
Output: 2 channels: Label 1: spleen; Label 0: everything else
19+
20+
## Scores
21+
This model achieve the following Dice score on the validation data (our own split from the training dataset):
22+
23+
Mean dice = 0.96
24+
25+
# Disclaimer
26+
This is an example, not to be used for diagnostic purposes.
27+
28+
# References
29+
[1] Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training." arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506.
30+
31+
[2] Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40
Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
Third Party Licenses
2+
-----------------------------------------------------------------------
3+
4+
/*********************************************************************/
5+
i. Medical Segmentation Decathlon
6+
http://medicaldecathlon.com/

0 commit comments

Comments
 (0)