|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "c408367e", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# 2D Model Inference on a 3D Volume " |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "a8681db2", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "Usecase: A 2D Model, such as, a 2D segmentation U-Net operates on 2D input which can be slices from a 3D volume (for example, a CT scan). \n", |
| 17 | + "\n", |
| 18 | + "After editing sliding window inferer as described in this tutorial, it can handle the entire flow as shown:\n", |
| 19 | + "\n", |
| 20 | + "\n", |
| 21 | + "The input is a *3D Volume*, a *2D model* and the output is a *3D volume* with 2D slice predictions aggregated. \n", |
| 22 | + "\n" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "markdown", |
| 27 | + "id": "239b0d93", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "[](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/master/modules/2d_inference_3d_volume.ipynb)\n" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 1, |
| 36 | + "id": "f2e1b91f", |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "# Install monai\n", |
| 41 | + "!python -c \"import monai\" || pip install -q \"monai-weekly\"" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 2, |
| 47 | + "id": "e9cd1b08", |
| 48 | + "metadata": {}, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "# Import libs\n", |
| 52 | + "from monai.inferers import SlidingWindowInferer\n", |
| 53 | + "import torch\n", |
| 54 | + "from typing import Callable, Any\n", |
| 55 | + "from monai.networks.nets import UNet" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "markdown", |
| 60 | + "id": "85f00a47", |
| 61 | + "metadata": {}, |
| 62 | + "source": [ |
| 63 | + "## Overiding SlidingWindowInferer\n", |
| 64 | + "The simplest way to achieve this functionality is to create a class `YourSlidingWindowInferer` that inherits from `SlidingWindowInferer` in `monai.inferers`" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 3, |
| 70 | + "id": "01f8bfa3", |
| 71 | + "metadata": {}, |
| 72 | + "outputs": [], |
| 73 | + "source": [ |
| 74 | + "class YourSlidingWindowInferer(SlidingWindowInferer):\n", |
| 75 | + " def __init__(self, spatial_dim: int = 0, *args, **kwargs):\n", |
| 76 | + " # Set dim to slice the volume across, for example, `0` could slide over axial slices,\n", |
| 77 | + " # `1` over coronal slices\n", |
| 78 | + " # and `2` over sagittal slices.\n", |
| 79 | + " self.spatial_dim = spatial_dim\n", |
| 80 | + "\n", |
| 81 | + " super().__init__(*args, **kwargs)\n", |
| 82 | + "\n", |
| 83 | + " def __call__(\n", |
| 84 | + " self,\n", |
| 85 | + " inputs: torch.Tensor,\n", |
| 86 | + " network: Callable[..., torch.Tensor],\n", |
| 87 | + " slice_axis: int = 0,\n", |
| 88 | + " *args: Any,\n", |
| 89 | + " **kwargs: Any,\n", |
| 90 | + " ) -> torch.Tensor:\n", |
| 91 | + "\n", |
| 92 | + " assert (\n", |
| 93 | + " self.spatial_dim < 3\n", |
| 94 | + " ), \"`spatial_dim` can only be `[D, H, W]` with `0, 1, 2` respectively\"\n", |
| 95 | + "\n", |
| 96 | + " # Check if roi size (eg. 2D roi) and input volume sizes (3D input) mismatch\n", |
| 97 | + " if len(self.roi_size) != len(inputs.shape[2:]):\n", |
| 98 | + "\n", |
| 99 | + " # If they mismatch and roi_size is 2D add another dimension to roi size\n", |
| 100 | + " if len(self.roi_size) == 2:\n", |
| 101 | + " self.roi_size = list(self.roi_size)\n", |
| 102 | + " self.roi_size.insert(self.spatial_dim, 1)\n", |
| 103 | + " else:\n", |
| 104 | + " raise RuntimeError(\n", |
| 105 | + " \"Currently, only 2D `roi_size` is supported, cannot broadcast to volume. \"\n", |
| 106 | + " )\n", |
| 107 | + "\n", |
| 108 | + " return super().__call__(inputs, lambda x: self.network_wrapper(network, x))\n", |
| 109 | + "\n", |
| 110 | + " def network_wrapper(self, network, x, *args, **kwargs):\n", |
| 111 | + " \"\"\"\n", |
| 112 | + " Wrapper handles cases where inference needs to be done using\n", |
| 113 | + " 2D models over 3D volume inputs.\n", |
| 114 | + " \"\"\"\n", |
| 115 | + " # If depth dim is 1 in [D, H, W] roi size, then the input is 2D and needs\n", |
| 116 | + " # be handled accordingly\n", |
| 117 | + "\n", |
| 118 | + " if self.roi_size[self.spatial_dim] == 1:\n", |
| 119 | + " # Pass 4D input [N, C, H, W]/[N, C, D, W]/[N, C, D, H] to the model as it is 2D.\n", |
| 120 | + " x = x.squeeze(dim=self.spatial_dim + 2)\n", |
| 121 | + " out = network(x, *args, **kwargs)\n", |
| 122 | + " # Unsqueeze the network output so it is [N, C, D, H, W] as expected by\n", |
| 123 | + " # the default SlidingWindowInferer class\n", |
| 124 | + " return out.unsqueeze(dim=self.spatial_dim + 2)\n", |
| 125 | + "\n", |
| 126 | + " else:\n", |
| 127 | + " return network(x, *args, **kwargs)" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "markdown", |
| 132 | + "id": "bb0a63dd", |
| 133 | + "metadata": {}, |
| 134 | + "source": [ |
| 135 | + "## Testing added functionality\n", |
| 136 | + "Let's use the `YourSlidingWindowInferer` in a dummy example to execute the workflow described above." |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": 4, |
| 142 | + "id": "85b15305", |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [ |
| 145 | + { |
| 146 | + "name": "stdout", |
| 147 | + "output_type": "stream", |
| 148 | + "text": [ |
| 149 | + "Axial Inferer Output Shape: torch.Size([1, 1, 64, 256, 256])\n", |
| 150 | + "Coronal Inferer Output Shape: torch.Size([1, 1, 64, 256, 256])\n" |
| 151 | + ] |
| 152 | + } |
| 153 | + ], |
| 154 | + "source": [ |
| 155 | + "# Create a 2D UNet with randomly initialized weights for testing purposes\n", |
| 156 | + "\n", |
| 157 | + "# 3 layer network with down/upsampling by a factor of 2 at each layer with 2-convolution residual units\n", |
| 158 | + "net = UNet(\n", |
| 159 | + " spatial_dims=2,\n", |
| 160 | + " in_channels=1,\n", |
| 161 | + " out_channels=1,\n", |
| 162 | + " channels=(4, 8, 16),\n", |
| 163 | + " strides=(2, 2),\n", |
| 164 | + " num_res_units=2,\n", |
| 165 | + ")\n", |
| 166 | + "\n", |
| 167 | + "# Initialize a dummy 3D tensor volume with shape (N,C,D,H,W)\n", |
| 168 | + "input_volume = torch.ones(1, 1, 64, 256, 256)\n", |
| 169 | + "\n", |
| 170 | + "# Create an instance of YourSlidingWindowInferer with roi_size as the 256x256 (HxW) and sliding over D axis\n", |
| 171 | + "axial_inferer = YourSlidingWindowInferer(roi_size=(256, 256), sw_batch_size=1, cval=-1)\n", |
| 172 | + "\n", |
| 173 | + "output = axial_inferer(input_volume, net)\n", |
| 174 | + "\n", |
| 175 | + "# Output is a 3D volume with 2D slices aggregated\n", |
| 176 | + "print(\"Axial Inferer Output Shape: \", output.shape)\n", |
| 177 | + "# Create an instance of YourSlidingWindowInferer with roi_size as the 64x256 (DxW) and sliding over H axis\n", |
| 178 | + "coronal_inferer = YourSlidingWindowInferer(\n", |
| 179 | + " roi_size=(64, 256),\n", |
| 180 | + " sw_batch_size=1,\n", |
| 181 | + " spatial_dim=1, # Spatial dim to slice along is added here\n", |
| 182 | + " cval=-1,\n", |
| 183 | + ")\n", |
| 184 | + "\n", |
| 185 | + "output = coronal_inferer(input_volume, net)\n", |
| 186 | + "\n", |
| 187 | + "# Output is a 3D volume with 2D slices aggregated\n", |
| 188 | + "print(\"Coronal Inferer Output Shape: \", output.shape)" |
| 189 | + ] |
| 190 | + } |
| 191 | + ], |
| 192 | + "metadata": { |
| 193 | + "kernelspec": { |
| 194 | + "display_name": "Python 3 (ipykernel)", |
| 195 | + "language": "python", |
| 196 | + "name": "python3" |
| 197 | + }, |
| 198 | + "language_info": { |
| 199 | + "codemirror_mode": { |
| 200 | + "name": "ipython", |
| 201 | + "version": 3 |
| 202 | + }, |
| 203 | + "file_extension": ".py", |
| 204 | + "mimetype": "text/x-python", |
| 205 | + "name": "python", |
| 206 | + "nbconvert_exporter": "python", |
| 207 | + "pygments_lexer": "ipython3", |
| 208 | + "version": "3.7.11" |
| 209 | + } |
| 210 | + }, |
| 211 | + "nbformat": 4, |
| 212 | + "nbformat_minor": 5 |
| 213 | +} |
0 commit comments