Skip to content
This repository was archived by the owner on Feb 2, 2024. It is now read-only.
This repository was archived by the owner on Feb 2, 2024. It is now read-only.

PERF: Slow read_csv() Function with pandas Version 1.3.4 for CSV Files with Large Number of Columns  #1008

Open
@Alexia-I

Description

@Alexia-I

Issue Description:
Hello.
I have discovered a performance degradation in the read_csv function of pandas version 1.3.4 when handling CSV files with a large number of columns. This problem significantly increases the loading time from just a few seconds in the previous version 1.2.5 to several minutes, almost 60x diff. I found some discussions on GitHub related to this issue, including #44106 and #44192.
I found that your repo used the influenced api.

Steps to Reproduce:

I have created a small reproducible example to better illustrate this issue.

# v1.3.4
import os
import pandas
import numpy
import timeit

def generate_sample():
    if os.path.exists("test_small.csv.gz") == False:
        nb_col = 100000
        nb_row = 5
        feature_list = {'sample': ['s_' + str(i+1) for i in range(nb_row)]}
        for i in range(nb_col):
            feature_list.update({'feature_' + str(i+1): list(numpy.random.uniform(low=0, high=10, size=nb_row))})
        df = pandas.DataFrame(feature_list)
        df.to_csv("test_small.csv.gz", index=False, float_format="%.6f")

def load_csv_file():
    col_names = pandas.read_csv("test_small.csv.gz", low_memory=False, nrows=1).columns
    types_dict = {col: numpy.float32 for col in col_names}
    types_dict.update({'sample': str})
    feature_df = pandas.read_csv("test_small.csv.gz", index_col="sample", na_filter=False, dtype=types_dict, low_memory=False)
    print("loaded dataframe shape:", feature_df.shape)

generate_sample()
timeit.timeit(load_csv_file, number=1)

# results
loaded dataframe shape: (5, 100000)
120.37690759263933
# v1.3.5
import os
import pandas
import numpy
import timeit

def generate_sample():
    if os.path.exists("test_small.csv.gz") == False:
        nb_col = 100000
        nb_row = 5
        feature_list = {'sample': ['s_' + str(i+1) for i in range(nb_row)]}
        for i in range(nb_col):
            feature_list.update({'feature_' + str(i+1): list(numpy.random.uniform(low=0, high=10, size=nb_row))})
        df = pandas.DataFrame(feature_list)
        df.to_csv("test_small.csv.gz", index=False, float_format="%.6f")

def load_csv_file():
    col_names = pandas.read_csv("test_small.csv.gz", low_memory=False, nrows=1).columns
    types_dict = {col: numpy.float32 for col in col_names}
    types_dict.update({'sample': str})
    feature_df = pandas.read_csv("test_small.csv.gz", index_col="sample", na_filter=False, dtype=types_dict, low_memory=False)
    print("loaded dataframe shape:", feature_df.shape)


generate_sample()
timeit.timeit(load_csv_file, number=1)

# results
loaded dataframe shape: (5, 100000)
2.8567268839105964

Suggestion

I would recommend considering an upgrade to a different version of pandas >= 1.3.5 or exploring other solutions to optimize the performance of loading CSV files.
Any other workarounds or solutions would be greatly appreciated.
Thank you!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions